scholarly journals Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 800 ◽  
Author(s):  
Mohamed Nadjib Boukhatem ◽  
William N. Setzer

After its recent discovery in patients with serious pneumonia in Wuhan (China), the 2019 novel coronavirus (2019-nCoV), named also Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spread quickly. Unfortunately, no drug or vaccine for treating human this coronavirus infection is available yet. Numerous options for controlling or preventing emerging 2019-nCoV infections may be predicted, including vaccines, interferon therapies, and small-molecule drugs. However, new interventions are likely to require months to years to develop. In addition, most of the existing antiviral treatments frequently lead to the development of viral resistance combined with the problem of side effects, viral re-emergence, and viral dormancy. The pharmaceutical industry is progressively targeting phytochemical extracts, medicinal plants, and aromatic herbs with the aim of identifying lead compounds, focusing principally on appropriate alternative antiviral drugs. Spices, herbal medicines, essential oils (EOs), and distilled natural products provide a rich source of compounds for the discovery and production of novel antiviral drugs. The determination of the antiviral mechanisms of these natural products has revealed how they interfere with the viral life cycle, i.e., during viral entry, replication, assembly, or discharge, as well as virus-specific host targets. Presently, there are no appropriate or approved drugs against CoVs, but some potential natural treatments and cures have been proposed. Given the perseverance of the 2019-nCoV outbreak, this review paper will illustrate several of the potent antiviral chemical constituents extracted from medicinal and aromatic plants, natural products, and herbal medicines with recognized in vitro and in vivo effects, along with their structure–effect relationships. As this review shows, numerous potentially valuable aromatic herbs and phytochemicals are awaiting assessment and exploitation for therapeutic use against genetically and functionally different virus families, including coronaviruses.

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4568 ◽  
Author(s):  
Mayara Castro de Morais ◽  
Jucieudo Virgulino de Souza ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Silvio Santana Dolabella ◽  
Damião Pergentino de Sousa

Trypanosomiases are diseases caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans, this includes Chagas disease and African trypanosomiasis. There are few therapeutic options, and there is low efficacy to clinical treatment. Therefore, the search for new drugs for the trypanosomiasis is urgent. This review describes studies of the trypanocidal properties of essential oils, an important group of natural products widely found in several tropical countries. Seventy-seven plants were selected from literature for the trypanocidal activity of their essential oils. The main chemical constituents and mechanisms of action are also discussed. In vitro and in vivo experimental data show the therapeutic potential of these natural products for the treatment of infections caused by species of Trypanosoma.


2021 ◽  
Vol 12 (6) ◽  
pp. 719-724
Author(s):  
Santwana Palai ◽  
◽  
Shyam Sundar Kesh ◽  

Thousands of individuals have perished as a result of Covid-19 and it has turned into a global problem. The novel coronavirus 2019 (nCoV-2019), also known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spread rapidly following its discovery in Wuhan patients with acute pneumonia in China. No medication or vaccine are available to treat human coronavirus infection successfully. The alternative therapies and cures are not are effective or authorised to treat Corona virus. Treatments are primarily supportive because no particular pandemic cure has been licenced. New interventions will most likely take months to years to mature. Using antiviral medicinal herbs as an auxiliary or supportive therapy seems to be a viable alternative. The essential oils of medicinal plants have antiviral and immunomodulatory effects. Being rich in antioxidants, essential oils can be used to develop new antiviral remedies. Such beneficial essential oils are being evaluated and exploited for its potent therapeutic use against many viruses. These natural compounds bestow antiviral actions by disrupting the viral life cycle during viral entry, assembly, replication, discharge and virus-specific host targets. This study highlights the essential oils derived from medicinal and aromatic plants with in vitro and in vivo antiviral effects. Essential oils having known pharmacokinetic and pharmacodynamic properties can be repurposed as a strategy against deadly SARS-CoV-2 infection. These essential oils of herbal plants can be an effective therapeutic strategy against SARS-CoV-2 when used along with conventional antiviral medicines.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


2018 ◽  
Vol 46 (1) ◽  
pp. 14 ◽  
Author(s):  
Weibson Paz Pinheiro André ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Lorena Mayana Beserra de Oliveira ◽  
Iara Tersia Freitas Macedo ◽  
Fernanda Cristina Macedo Rondon ◽  
...  

Background: Gastrointestinal nematodes are one of the major health and economic problem of sheep and goats in the world. The control of these nematodes is carried out conventionally with synthetic anthelminths, which favored the selection of gastrointestinal nematode (GIN) populations multiresistant to anthelmintics. The emergence of anthelmintic resistance has stimulated the search for new alternatives to control small ruminant GIN, standing out the use of plants and their bioactives compounds, such as essential oils (EO). The objective of this review was to present the main characteristics and anthelmintic activity of EO, their isolated compounds and drug delivery systems in the control of GIN.Review: Essential oils are a complex blend of bioactive compounds with volatile, lipophilic, usually odoriferous and liquid substances. EO are composed of terpenes, terpenoids, aromatic and aliphatic constituents. EO has various pharmacological activities of interest in preventive veterinary medicine such as antibacterials, antifungals, anticoccicids, insecticides and anthelmintics. In vitro and in vivo tests are used to validate the anthelmintic activity of EO on GIN. In vitro tests are low cost screening tests that allow the evaluation of the anthelmintic activity of a large amount of bioactive compounds on eggs, first (L1) and third stage larvae (L3), and adult nematodes. The antiparasitic effect of EO is related to its main compound or to the interaction of the compounds. These bioactive compounds penetrate the cuticle of the nematodes by transcuticular diffusion, altering the mechanisms of locomotion, besides causing cuticular lesions. Following in vitro evaluation, the acute and sub-chronic toxicity test should be performed to assess the toxicity of the bioactive compounds and to define the dose to be used in in vivo tests. In vivo tests are more reliable because the anthelmintic effectiveness of bioactive compounds is evaluated after the metabolization process. The metabolization process of the bioactive compounds can generate metabolites that exhibit or not anthelmintic effectiveness. The in vivo tests assessing the anthelmintic effectiveness of bioactive compounds in sheep and goats are the fecal egg count reduction test and the controlled test.  OE promoted reduction of egg elimination in faeces which may be related to cuticular and reproductive alterations in GIN, and reduction of parasite burden in in vivo tests. Due to the promising results obtained with OE in the in vivo tests, interest has been aroused in using nanotechnology as an alternative to increase the bioavailability of OE and consequently, potentializing its anthelmintic effect, reducing the dose and  toxicity of the biocompounds. In addition to nanotechnology, the isolation and chemical modification of compounds isolated from OE have been employed to obtain new molecules with anthelmintic action and understand the mechanism of action of EO on the small ruminant GIN.Conclusion: The use of EO and their compound bioactive in the control of resistant populations of GIN is a promising alternative. The adoption of strategies in which natural products can replace synthetic anthelmintics, such as in dry periods and use synthetic anthelmintics in the rainy season when the population in refugia in the pasture is high, thus reducing the dissemination of GIN resistant populations. As perspective, the evaluation of pharmacokinetics and pharmacodynamics of these natural products should be performed so that one defines treatment protocols that optimize the anthelmintic effect.


Author(s):  
N.M. Devyatkina ◽  
N.O. Bobrova ◽  
E.M. Vazhnichaya

The oral cavity contains a large number of bacteria, some of which are involved in the development of caries and periodontitis (S. mutans, S. sobrinus, Lactobacilli spp, P. intermedia, P. gingivalis, and T. forythus). The disadvantages of existing antiseptics used in dentistry necessitate the study of antibacterial properties of herbal medicines, and, in particular, of essential oils. The aim of this review is to provide the analysis of literature sources from PubMed and Google Scholar databases related to the effects of essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components on cariogenic and periodontopathic microflora. It was found out that the most in vitro studies evaluated the effects of essential oils or isolated compounds (eugenol, menthol, thymol, carvacrol, eucalyptol, and terpinene-4-ol) on S. mutans, which is considered to be the most cariogenic of oral streptococci, and the researchers limited to defining the susceptibility of the microorganism and effects on biofilm formation. Only in a few studies, the effects of essential oils on the virulence factors of oral pathogens, in particular glycosyl transferase, are represented. Clinical trials of essential oils, their components and combinations confirm the therapeutic potential of these agents in vivo, but raise the question of their effectiveness, taking into account the short-term action, which does not exceed the potency of chlorhexidine. Essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components should be used for treating caries and periodontitis. They are also promising when used as agents of the oral care products, preservatives of the dental medicinal forms, and as remedies for halitosis. With a rational prescription, essential oils can be useful in improving the quality of dental treatment and preventive procedures.


Parasitology ◽  
2019 ◽  
Vol 146 (10) ◽  
pp. 1233-1246 ◽  
Author(s):  
Francianne Oliveira Santos ◽  
Amanda Ponce Morais Cerqueira ◽  
Alexsandro Branco ◽  
Maria José Moreira Batatinha ◽  
Mariana Borges Botura

AbstractThe gastrointestinal nematodes (GIN) stand out as an important cause of disease in small ruminant, especially on goat farm. Widespread resistance to synthetic anthelminthics has stimulated the research for alternative strategies of parasite control, including the use of medicinal plants. The present work summarizes the in vitro and in vivo studies of plants with activity against GIN of goats, focusing on the description of chemical constituents related to this effect. This review retrieved 56 scientific articles from 2008 to 2018 describing more than 100 different plant species. The most frequently investigated family was Fabaceae (30.7%). Most in vitro studies on the activity of plant extracts and fractions were carried out with of free-living stages nematodes. In vivo studies were conducted mainly with the use of plants in animal feed and generally showed lower effectiveness compared to in vitro assays. The main plant secondary metabolites associated with anthelmintic effect are condensed tannins, saponin and flavonoids. However, the studies with compounds isolated from plants and elucidation of their mechanisms of action are scarce. Herbal medicines are thought to be promising sources for the development of effective anthelmintic agents.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yunshuang Fan ◽  
Yamei Li ◽  
Yuanyuan Wu ◽  
Lixin Li ◽  
Yuming Wang ◽  
...  

Simiao Wan (SMW), an important multiherbal formula used in traditional Chinese medicine, is extensively used to treat rheumatoid arthritis. However, the knowledge of the bioactive components of SMW remains unclear. Thus, gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) were used to analyze the chemical constituents of volatile and nonvolatile extracts of SMW, as well as its absorbed components in rat plasma after oral SMW administration. Identification of several compounds was enabled by comparison of retention times, MS spectra, and MS/MS spectral data with the standard substance and reference materials reported in the literature. In the volatile extracts, GC-MS identified 26 compounds in vitro, three of which observed in blood by GC-MS. In the nonvolatile extracts, LC-MS identified 49 compounds in SMW; 18 compounds containing 7 prototype compounds, 5 metabolites, and 6 unknown compounds were absorbed by blood. The proposed GC-MS and LC-MS method was appropriate not only for the rapid screening and identification of multiple components of an SMW extract but also for screening its bioactive constituents in vivo. The proposed method could be a promising tool for the quality control of other Chinese herbal medicines.


2021 ◽  
Vol 22 (22) ◽  
pp. 12255
Author(s):  
Niti Sharma ◽  
Mario A. Tan ◽  
Seong Soo A. An

Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and β-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 479
Author(s):  
Panayiota Xylia ◽  
Antonios Chrysargyris ◽  
Zienab F. R. Ahmed ◽  
Nikolaos Tzortzakis

Nowadays, increase fruit losses are being reported due to the development of fungal postharvest diseases. In an attempt to reduce the use of synthetic fungicides, a turn towards natural products such as essential oils (EOs) and natural compounds has been made. The objective of this study was to investigate the effects of eucalyptus (Euc), rosemary (Ros) EO, their mixture (50:50 v/v) and their common main component (i.e., eucalyptol) on the quality parameters, fruit response and inhibition of blue rot (Penicillium expansum) in apple and pear fruits during their shelf life. The results of the present study revealed that fungal colony growth decreased in vitro with exposure at eucalyptus EO (Euc-300 μL/L), rosemary EO (Ros-300 μL/L) and their mixture (Euc + Ros 100 and 300 μL/L). The exposure at Ros-100 μL/L stimulated spore production, whilst Euc + Ros (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) decreased spore germination. Moreover, the in vivo applied treatments resulted in decreased lesion growth of P. expansum in apple and pear fruits. Respiration rate increased with the application of Euc + Ros at 300 μL/L and eucalyptus EO (Euc-100 μL/L and Euc-300 μL/L) for both assessed fruits. On the other hand, no significant differences were reported on apples and pears total soluble solids and acidity values. The application of Euc + Ros-300 μL/L in apples increased hydrogen peroxide (H2O2) levels, whilst Euc-100 and Euc-300 μL/L increased lipid peroxidation levels. Regarding pear fruits, exposure to Euc-100 μL/L and Ros-100 μL/L resulted in increased H2O2 whereas, Euc-100 μL/L, Ros- (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) also increased lipid peroxidation. The findings of this study indicate that the investigated natural products can be explored for the preservation of fresh apples and pears, as alternative natural fungicides with consideration of the fresh produce quality attributes.


2020 ◽  
Vol 9 (1) ◽  
pp. 902-907

Disease can occur due to alterations in many physiological processes. A variety of factorsare known to be involved in the progression of cancer, a chronic diseasethat occurs due to permissible proliferative signaling, avoiding growth suppressors, resisting cell death, allowing replicative immortality, induction of angiogenesis, and inducing invasion and metastasis, along with reprogramming of metabolic pathways involved in energy production and avoiding the host immune response for cell destruction. Treatment of such a multifactorial disease has very less cure rate because of the singular agents tried in the past for targeting. Molecular level studies with deeper insight are urgently neededthat focus on the most promising herbal-derived bioactive substances for which thorough research was carried out in the literature in various data-bases such as PUB-MED, MEDLINE, SCOPUS indexed journals etc. to look for systematic reviews of the protocols or data interpretation, natural drug/immunological properties and validation. As immune system plays avery important role in the proliferation or suppression of cancer and other autoimmune diseases, It is the dire need to study the effect of such natural compound on the immune system so that a possible drug target or epitope can be identified for the treatment of such diseases. In nutshell there are many nonclinical in vitro and in vivo studies on herbal medicines which commonly supports the traditional therapeutic claims. It has been seen from the previos studies in literature that the yield and composition of bioactive compounds derived from plants are dependent upon the production source,culturing conditions and extraction protocols.Therefore appropriate optimization conditions would certainly assist the medical and scientific fraternity to accept herbal products as potential candidates for cancer treatment. In this article we explored the different natural products, their immunological effects concerning cancer with no or negligible side effects. However,one has to look for potential herb–drug or herb-epitope interactions and how immune system responds to such drugs.


Sign in / Sign up

Export Citation Format

Share Document