scholarly journals Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and their Exploration to Metal Ions Adsorption

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1046 ◽  
Author(s):  
Dong Wang ◽  
Wanli Cheng ◽  
Yiying Yue ◽  
Lihui Xuan ◽  
Xiaohui Ni ◽  
...  

Cellulose nanocrystals/chitosan/polyvinyl alcohol (CNC/CS/PVA) composite nanofibrous films were prepared while using an electrospinning technique and successfully thiol-functionalized. Then, the modified films were used for the sorption-desorption of Cu(II) and Pb(II) ions. Subsequently, the adsorption capacity of the films was investigated by changing the CNC loading level, solution pH, and adsorption time. Results showed that the adsorption of metal ions by the films was the best with CNC loading level of 5 wt %, pH of 6, and adsorption time of 4 h. The adsorption behavior of the films was agreed with the Freundlich model. The adsorption equation of metal ions could be described while using a pseudo-second order model. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) and Pb(II) ions were estimated to be 484.06 and 323.49 mg/g, respectively. The Cu(II) and Pb(II) ions adsorption efficiencies of the films after 4 adsorption-desorption cycles were 90.58% and 90.21%, respectively. This study may provide a feasible approach for the application of functional CNC/CS/PVA nanofibrous films in the treatment of water.

2015 ◽  
Vol 61 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Huining Zhang ◽  
Li Liu ◽  
Qing Chang ◽  
Hongyu Wang ◽  
Kai Yang

The adsorption behavior of Cr(VI) ions from aqueous solution by a chromium-tolerant strain was studied through batch experiments. An isolate designated Zer-1 was identified as a species of Bosea on the basis of 16S rRNA results. It showed a maximum resistance to 550 mg·L−1 Cr(VI). The effects of 3 important operating parameters, initial solution pH, initial Cr(VI) concentration, and biomass dose, were investigated by central composite design. On the basis of response surface methodology results, maximal removal efficiency of Cr(VI) was achieved under the following conditions: pH, 2.0; initial concentration of metal ions, 55 mg·L−1; and biomass dose, 2.0 g·L−1. Under the optimal conditions, the maximum removal efficiency of Cr(VI) ions was found to be nearly 98%. The experimental data exhibited a better fit with the Langmuir model than the Freundlich model. The biosorption mechanisms were investigated with pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. These results revealed that biosorption of Cr(VI) onto bacterial biomass could be an alternative method for the removal of metal ions from aqueous solution.


2021 ◽  
Vol 19 (9) ◽  
pp. 46-54
Author(s):  
Makarim A. Mahdi ◽  
Aymen A.R. Jawad ◽  
Aseel M. Aljeboree ◽  
Layth S. Jasim ◽  
Ayad F. Alkaim

The AAc/GO nanocomposite hydrogel was successfully employed as a polymeric Nano sorbent of the removal efficiency of M G dye from the model. The complication of the mechanism of the adsorption system was completely exposed by examining how solution pH affects adsorption, Ionic strength isotherm models, kinetic models, and thermodynamics. The adsorption of the MG dye was greatly dependent on the solution pH. The Freundlich model has been demonstrated to be the most accurate in describing the MG dye sorption, whilst the Langmuir model was shown to be the least accurate. Additionally, these integrated mechanisms fit nicely within the framework of a pseudo-second-order model. Additionally, the contact time at equilibrium short (ten minutes) required to MG removes demonstrates the AAc/GO nanocomposite hydrogel can be considered an efficient and potentially useful adsorbent for MG removal from industrial effluents.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2013 ◽  
Vol 726-731 ◽  
pp. 1922-1925 ◽  
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Si Zhao Zhang

The sorptive potential of sunflower straw (≤125 μm) for Sr2+ from aqueous solution was evaluated. Batch adsorption experiments were carried out as a function of solution pH, adsorbent dosage, Sr2+ concentration and contact time. FT-IR spectra and SEM of sunflower straw were employed to explore the functional groups available for the binding of Sr2+ and morphology of the adsorbent. Maximum uptake capacity of sunflower straw was 17.48 mg/g occurred at around pH 3-7. The adsorption equilibrium can be achieved within 5 min and kinetic data were fitted well to pseudo-second-order model. The Langmuir and Freundlich models were applied to describe isotherm sorption data. The Langmuir model gave an acceptable fit than Freundlich model.


2016 ◽  
Vol 75 (2) ◽  
pp. 474-481 ◽  
Author(s):  
Sina Dobaradaran ◽  
Iraj Nabipour ◽  
Mozhgan Keshtkar ◽  
Fatemeh Faraji Ghasemi ◽  
Tayebeh Nazarialamdarloo ◽  
...  

The aim of this study was to determine adsorption properties of cuttlebone, cuttlefish bone as dead biomass, for lead(II) and copper(II) from aqueous solutions. Adsorption kinetic, isotherm and effect of pH (in the range of 2.0–7.0) were investigated in a single component batch system at room temperature (25 ± 1 °C). The heavy metal adsorption by cuttlebone was relatively rapid and reached equilibrium in 120 min in all the cases. The pseudo-second order rate equation described the adsorption kinetic of both the ions. The adsorption capacities of Pb2+ and Cu2+ were constantly increased by pH and the optimum condition of pH was determined to be 7.0. The Freundlich model was better fitted than other models with the isotherm data, indicating sorption of the metal ions in a heterogeneous surface. According to the Langmuir model, the maximum adsorption capacities of cuttlebone for Pb2+ and Cu2+ were determined to be 45.9 and 39.9 mg/g, respectively. The results indicated cuttlebone as a promising adsorbent for Pb2+ and Cu2+, which presents a high capacity of self-purification in marine environments and also can be used for removal of the metal ions from water and wastewater.


2021 ◽  
Vol 55 (7-8) ◽  
pp. 919-932
Author(s):  
HANEN NOURI ◽  
ASMA ABDEDAYEM ◽  
INES HAMIDI ◽  
SOUAD SOUISSI NAJJAR ◽  
ABDELMOTTALEB OUEDERNI

The potential of Tunisian prickly pear cactus as a low-cost adsorbent for Pb(II) ions from aqueous solution was investigated in batch mode. To determine the optimum adsorption conditions, experiments were conducted varying the operating parameters, as follows: pH of the solutions (2-10), initial concentration of metal ions (0.98-2.4 mmol/L) and temperature (30-60 °C). The adsorption isotherm data were analyzed by applying the Langmuir, Freundlich, Dubinin–Raduskevich, Temkin and Redlich–Peterson models. The experimental results were better fitted by the Freundlish model. The pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models were applied to the description of the kinetic data. The best fit was achieved for the pseudo-second order model, and the presence of both film and intraparticle diffusion mechanisms was demonstrated. Thermodynamic studies indicated that the biosorption on the cladode powder is an exothermic and chemical process. The desorption/regeneration process was also investigated. The obtained results revealed over 90% desorption of Pb(II) metal ions from the total metal-loaded mass of the adsorbent and good stability of the cactus adsorbent for four successive adsorption/desorption cycles.


2020 ◽  
Vol 10 (10) ◽  
pp. 3437
Author(s):  
Jude Ofei Quansah ◽  
Thandar Hlaing ◽  
Fritz Ndumbe Lyonga ◽  
Phyo Phyo Kyi ◽  
Seung-Hee Hong ◽  
...  

We assessed the applicability of rice husk (RH) to remove cationic dyes, i.e., methylene blue (MB) and crystal violet (CV), from water. RH thermally treated at 75 °C showed a higher adsorption capacity than that at high temperatures (300–700 °C). For a suitable CV-adsorption model, a pseudo-first-order model for MB adsorption was followed by the kinetics adsorption process; however, a pseudo-second-order model was then suggested. In the qt versus t1/2 plot, the MB line passed through the origin, but that of CV did not. The Langmuir isotherm model was better than the Freundlich model for both dye adsorptions; furthermore, the adsorption capacity for MB and CV was 24.48 mg/g and 25.46 mg/g, respectively. Thermodynamically, the adsorption of both MB and CV onto the RH was found to be spontaneous and endothermic. This adsorption increased insignificantly on increasing the solution pH from 4 to 10. With an increasing dosage of the RH, there was an increase in the removal percentages of MB and CV; however, adsorption capacity per unit mass of the RH was observed to decrease. Therefore, we conclude that utilizing RH as an available and affordable adsorbent is feasible to remove MB and CV from wastewater.


2020 ◽  
Vol 42 (4) ◽  
pp. 550-550
Author(s):  
Houria Rezala Houria Rezala ◽  
Houda Douba Houda Douba ◽  
Horiya Boukhatem and Amaya Romero Horiya Boukhatem and Amaya Romero

A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and BET surface area and consequently the improvement of its capacities adsorption and decolorization of Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms were well fitted by pseudo-second order and Freundlich models, respectively. In addition to that, thermodynamic studies showed an exothermic and a spontaneous process.


2015 ◽  
Vol 72 (9) ◽  
pp. 1505-1515 ◽  
Author(s):  
H. Asnaoui ◽  
A. Laaziri ◽  
M. Khalis

Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document