scholarly journals The Structure and Mechanical Properties of the UHMWPE Films Modified by the Mixture of Graphene Nanoplates with Polyaniline

Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 23 ◽  
Author(s):  
Tarek Dayyoub ◽  
Aleksey Maksimkin ◽  
Sergey Kaloshkin ◽  
Evgeniy Kolesnikov ◽  
Dilus Chukov ◽  
...  

Highly oriented UHMWPE films were reinforced with functionalized graphene nanoplates (GNP). GNP was functionalized by deposition of polyaniline (PANI) on the GNP surface. The structure of GNP/PANI was studied by Raman spectroscopy, and the structure of xerogels and films based on UHMWPE was studied by DSC and SEM. PANI promotes the reduction of the GNP aggregation in the UHMWPE matrix and increases the degree of crystallinity due to heterogeneous crystallization. The new lamellar crystal structure has a high drawability. The highest value of the tensile strength 1330 MPa (an increase of 45%) was obtained with a filler content of 2 wt % GNP/PANI, and the highest value of Young’s modulus 41 GPa (an increase of 32%) was obtained with a filler content of 1 wt % GNP/PANI. The effect of GNP with PANI fillers on the dynamic mechanical properties of the UHMWPE films was discussed.

2016 ◽  
Vol 16 (4) ◽  
pp. 4147-4152 ◽  
Author(s):  
Huiwen Liu ◽  
Jing Yang ◽  
Honglin Yu ◽  
Xiaoxuan Zou ◽  
Bo Jing ◽  
...  

The dynamic mechanical properties, crystallization behavior and morphology of nanoscale Tg tin fluorophosphate glass (TFP glass)/polyamide 66 (PA66) hybrid materials were investigated by XRD, DSC and SEM. The experimental results showed that the Tg of TFP/PA66 hybrid decreased and the third relaxation in the highly filled hybrid appeared due to the interaction between the TFP glass and amide groups of PA66. The storage modulus of the hybrid materials increased with increase in the content of TFP at low temperatures but had little effect at high temperatures. This result was attributed to the stiffness depression of the TFP glass when the temperature rose above its Tg and the similar elasticity of the two phases because of the interaction between the components. The degree of crystallinity and α, γ crystal content of PA66 both decreased due to the interaction between the two phases. In addition, the phase defect, the size distribution and the compatibility of TFP in the PA66 matrix were discussed by SEM, the results showed that the TFP appeared aggregation partly, but had the favorable compatibility in the PA66 matrix.


2018 ◽  
Vol 26 (2(128)) ◽  
pp. 26-31 ◽  
Author(s):  
Munir Hussain ◽  
Feichao Zhu ◽  
Feichao Zhu ◽  
Bin Yu ◽  
Bin Yu ◽  
...  

The thermal properties and morphological characterisation of isotactic polypropylene (iPP) homopolymer and its blends with low molecular low modulus polypropylene (LMPP) were studied. Firstly blends were prepared with variant LMPP contents, and their properties were characterised using SEM, DSC, XRD, and DMA. Later the mechanical properties of iPP/LMPP blend fibres were investigated. SEM results showed that the iPP/LMPP blends produced smoother surfaces when the LMPP content was increased, as well as the miscibility. All the Tg values with different LMPP percentages were in-between pure iPP and LMPP. The XRD results indicated the LMPP percentage decreased along with the degree of crystallinity of the iPP/LMPP blends (5% to 15%), which increased and then decreased as compared to pure iPP. The elongation at break increased when the LMPP content increased, with the maximum breaking elongation of the LMPP 25% blend reaching 12.95%, which showed great stretch-ability, whereas the elastic modulus of iPP/LMPP blends decreased.


1996 ◽  
Vol 461 ◽  
Author(s):  
Brendan J. Foran ◽  
Elizabeth Pingel ◽  
Gary E. Spilman ◽  
Larry J. Markoski ◽  
Tao Jiang ◽  
...  

ABSTRACTThe microstructure and thermal properties of copolymers of polyethylene terephthalate (PET) containing a crosslinkable terephthalic acid, 1,2-dihydrocyc Iobutabenzene 3,6 dicarboxylic acid (XTA) are reported. Wide angle x-ray scattering (WAXS) show that the addition of XTA does not alter the PET crystal structure in copolymers at low XTA contents. However, the degree of crystallinity drops for higher XTA levels. WAXS profiles show that PET-co-XTA 50% is amorphous, and that PEXTA homopolymer has a different crystal structure. Thermal data from DSC and TGA show that crosslinking of the benzocyclobutene groups (∼350°C) occurs at temperatures between melting (∼250°C) and degradation (∼400°C), making it possible to melt process the copolymers into fibers before the onset of crosslinking. Limiting oxygen index (LOI) measurements show that increased oxygen concentrations are required to sustain a stable flame in PET-co-XTA copolymers; whereas unmodified PET had an LOI value of -18%, the copolymers had LOI values near 32%. Further, while unmodified PET melts and drips as it burns, XTA copolymers formed a stable char that inhibiting flame propagation. An increased char was observed in optical micrographs for XTA containing polymers, and crystalline domains were observed near the burn surface in transmission electron micrographs.


Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 95-101
Author(s):  
Aneta NIEMIEC

The article presents the results of research on the impact of structural changes in polyether ether ketone (PEEK) on its mechanical properties. The polymer was exposed to gamma radiation at a dose of 50 and 150 kGy, and the radiation energy was 4 MeV. Changes in the degree of crystallinity and the related changes in the glass transition and melting temperature for the polymer were determined by differential scanning calorimetry (DSC). Mechanical properties were determined using the micro-mentoring method. The tests showed a change in the degree of crystallinity in the range of several degrees and a significant increase in the glass transition temperature. In terms of mechanical properties, the reduction of hardness and Young’s modulus was observed. Observed changes, especially in terms of changes in the structure of the polymer under the influence of radiation, are difficult to explain, which requires conducting further research, especially in the range of irradiation parameters used. Further research is important because PEEK is used in many fields, especially in conditions conducive to corrosion and the influence of radiation.


2011 ◽  
Vol 13 (3) ◽  
pp. 61-65 ◽  
Author(s):  
Agnieszka Szczygielska ◽  
Jacek Kijeński

Studies of properties of polypropylene/halloysite compositesThe results of the studies on the synthesis, mechanical and thermal properties of polypropylene composites with various amount of halloysite filler are presented. Halloysite (HNT) belongs to the silica type characterized by a two-layer 1:1 structure. This work was aimed to develop a method for the modification of halloysite in its prime use as a filler for polypropylene by extrusion. The composites contain 1, 3, 5 and 7 wt.% of HNT. The degree of crystallinity of the composites decrease with increasing halloysite content. The results confirm the expectations that composites of interesting physicochemical, mechanical and thermal properties can be obtained. The mechanical properties studied show that the filler modification method used leads to the synthesis of polymer composites of improved thermal and mechanical properties.


2013 ◽  
Vol 774-776 ◽  
pp. 856-859
Author(s):  
Hong Peng Zhong ◽  
Ahmed DawElbeit ◽  
Hai Juan Kong ◽  
Chun Mao Kang ◽  
Mei Hua ◽  
...  

The heat treatment was carried out to modify the aramid fibers, and the effect of tension on the mechanical properties and structure was investigated through Fiber Strength Equipment, viscosity, XRD and SEM . The results show that fibers,strength slightly decrease, but modulus increase significantly according to the increasing of tension at 480°C and 10s, and reach a maximum when the tension value is 300 g. After heat treatment, molecular weight decrease and the degree of crystallinity increase. SEM show that there is little effect on the surface topography of the fibers during treatment.


2020 ◽  
Vol 858 ◽  
pp. 59-65
Author(s):  
Nattakarn Hongsriphan ◽  
Kantika Somboon ◽  
Chutikan Paujai ◽  
Thitichaya Taengto

The composites between polyamide 11 (PA11) and functionalized graphene nanoplatelets (GNP) were prepared to compare influence of GNPs content and functionalities; hydroxyl (GO) and carboxylic acid (GC); on mechanical and thermal properties. The composites were melt compounded and injection molded into specimens with the final GNP content of 1, 3, 5, 7 and 9 wt%. It was found in XRD that these plasma-exfoliated GNPs acted as the nucleating agents that changed the crystal form of PA11, but did not have significant influence on crystallinity content. DSC analysis confirmed the nucleating effect of GNPs, which the degree of crystallinity was not affected by the presence of GNPs. The functionalities of GNP did not reduce the degradation temperature of the composites compared to neat PA11. Young's modulus and tensile strength at yield of the composites were higher with respect to the GNP content. This was attributed to stretching restriction of polymer chains by GNPs during the elastic deformation. The composites adding GO had higher tensile properties than those adding GC. In contrast, the composites adding GC showed higher impact strength than those adding GO. SEM micrographs indicated the failure of the composites occurred at the interphase between PA11 matrix and GNPs.


2006 ◽  
Vol 514-516 ◽  
pp. 951-955 ◽  
Author(s):  
Carlos M. Costa ◽  
Vitor Sencadas ◽  
João F. Mano ◽  
Senentxu Lanceros-Méndez

In this work, mechanical and thermal experimental techniques have been applied in order to relate the mechanical response with the microscopic variations of the material. Stress-strain results along the main directions of β-poly(vinylidene fluoride), β-PVDF, in poled and non-poled samples enables to investigate the influence of the poling process on the mechanical response of the material. Further, differential scanning calorimetry experiments allow the investigation of the effect of poling in the degree of crystallinity of the material as well as on the stability of the crystalline phase. Thermogravimetric analysis was used to investigate the kinetics of the thermal degradation of poled and non-poled β-PVDF samples. The differences observed between the two materials suggest that the poling affects the mechanical properties of the material especially in the direction parallel to the polymeric chains and originates changes at a molecular level that remain beyond the melting of the material.


Sign in / Sign up

Export Citation Format

Share Document