CONNECTION BETWEEN STRUCTURAL CHANGES OF IRRIADIATED POLYETHER ETHER KETONE AND MECHANICAL PROPERTIES

Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 95-101
Author(s):  
Aneta NIEMIEC

The article presents the results of research on the impact of structural changes in polyether ether ketone (PEEK) on its mechanical properties. The polymer was exposed to gamma radiation at a dose of 50 and 150 kGy, and the radiation energy was 4 MeV. Changes in the degree of crystallinity and the related changes in the glass transition and melting temperature for the polymer were determined by differential scanning calorimetry (DSC). Mechanical properties were determined using the micro-mentoring method. The tests showed a change in the degree of crystallinity in the range of several degrees and a significant increase in the glass transition temperature. In terms of mechanical properties, the reduction of hardness and Young’s modulus was observed. Observed changes, especially in terms of changes in the structure of the polymer under the influence of radiation, are difficult to explain, which requires conducting further research, especially in the range of irradiation parameters used. Further research is important because PEEK is used in many fields, especially in conditions conducive to corrosion and the influence of radiation.

2018 ◽  
Vol 935 ◽  
pp. 36-39 ◽  
Author(s):  
Azamat A. Zhansitov ◽  
Azamat L. Slonov ◽  
Arthur E. Baikaziev ◽  
Marina M. Murzakanova ◽  
S.Yu. Khashirova

Differential scanning calorimetry was used to study the temperatures and character of phase transitions of fibers based on polyether ether ketones. It is shown that in the production of fine fibers from polyether ether ketones, a predominantly amorphous structure is formed. Increasing the temperature to the crystallization temperature leads to an almost twofold increase in the degree of crystallinity. Lower molecular weight polyether ether ketone is characterized by a higher rate of crystallization and the formation of a more homogeneous crystalline structure.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 293
Author(s):  
Miklós Odrobina ◽  
Tamás Deák ◽  
László Székely ◽  
Tamás Mankovits ◽  
Róbert Zsolt Keresztes ◽  
...  

The present paper concentrates on the toughness and the degree of crystallinity of the magnesium-catalyzed polyamide 6 rods cast in different diametres, which are commonly used for gear manufacturing. Its toughness cannot be regarded as a constant feature due to the casting technology. The mechanical properties of the semi-finished products are sensitive to the manufactured dimension, e.g., cast diameter, which are investigated by the Charpy impact test and tensile impact test. It is generally accepted that the impact strength and tensile-impact strength correlate with the degree of crystallinity beside many other material’s feature. Crystallinity is evaluated by Differential Scanning Calorimetry. The aim of this study is to determine the relationship between toughness and crystallinity of the magnesium-catalyzed cast PA6 rods with different diameters. For the research cast rods between 40 and 300 mm diameter were selected in seven-dimensional steps. Based on the results, it was found that the toughness depends strongly on the diameter size. Furthermore, it is proved that the crystallinity explains 62.3% of the variation of the Charpy’s impact strengths, while the tensile impact method was not suitable to detect the difference between the test samples.


2018 ◽  
Vol 25 (4) ◽  
pp. 745-751 ◽  
Author(s):  
Yanwei Jing ◽  
Xueying Nai ◽  
Li Dang ◽  
Donghai Zhu ◽  
Yabin Wang ◽  
...  

Abstract The influence of calcium carbonate (CaCO3) with different polymorphs (calcite and aragonite) and morphologies (granular and rod-like) on mechanical and crystallization properties of polypropylene (PP) was investigated. Meanwhile, these CaCO3 fillers coated with oleic acid were added in different contents to PP. The results indicate that the tensile strength, flexural strength, modulus, and crystallization property of the filler-treated samples are improved, but the impact strength decreased. The crystallinity of the composites is higher than that of neat PP. Moreover, in the rod shape filler-treated sample, in both whisker species, the mechanical properties of composites are superior to the particles filled. Differential scanning calorimetry, X-ray diffraction, and mechanical tests display that calcite whisker-reinforced composite has higher crystallization enthalpy, melting enthalpy, degree of crystallinity, and mechanical properties than aragonite whiskers and calcite particles filled composites.


2006 ◽  
Vol 514-516 ◽  
pp. 951-955 ◽  
Author(s):  
Carlos M. Costa ◽  
Vitor Sencadas ◽  
João F. Mano ◽  
Senentxu Lanceros-Méndez

In this work, mechanical and thermal experimental techniques have been applied in order to relate the mechanical response with the microscopic variations of the material. Stress-strain results along the main directions of β-poly(vinylidene fluoride), β-PVDF, in poled and non-poled samples enables to investigate the influence of the poling process on the mechanical response of the material. Further, differential scanning calorimetry experiments allow the investigation of the effect of poling in the degree of crystallinity of the material as well as on the stability of the crystalline phase. Thermogravimetric analysis was used to investigate the kinetics of the thermal degradation of poled and non-poled β-PVDF samples. The differences observed between the two materials suggest that the poling affects the mechanical properties of the material especially in the direction parallel to the polymeric chains and originates changes at a molecular level that remain beyond the melting of the material.


2012 ◽  
Vol 32 (3) ◽  
Author(s):  
Said Bouhelal ◽  
M. Esperanza Cagiao ◽  
Maria Laura Di Lorenzo ◽  
Foued Zouai ◽  
Souhila Khellaf ◽  
...  

Abstract Compatible blends of isotactic polypropylene (iPP)/low-density polyethylene (LDPE)/ethylene-propylene-diene monomer (EPDM) were prepared by reactive blending in the presence of dicumyl peroxide (DCP). The blends were characterized using different techniques: dynamical rheological analysis (DRA), differential scanning calorimetry (DSC), optical microscopy (OM) and scanning electron microscopy (SEM), dynamical mechanical thermal analysis (DMTA), viscosity and impact strength, to evaluate their properties. Results revealed that the presence of the peroxide in LDPE/EPDM blends gives rise to crosslinking reactions, as is the case in iPP/LDPE/EPDM blends. However, in the latter case, scission reactions of the iPP component also take place. As a consequence of the whole process, morphological changes arise mainly in the amorphous regions, without affecting the degree of crystallinity of the components. The mechanical properties of the blends are consequently improved, due to the crosslinked network thus formed in the blends.


2022 ◽  
Author(s):  
M. Podzorova

Abstract. The mechanical properties of polymer composites based on polylactide vary significantly over a wide range of values. It has been established that photodegradation of low-density polyethylene – polylactide blends occurs both in the amorphous and in the crystalline phase of the PLA matrix, which leads to deterioration of the mechanical properties of the studied mixtures. Ozonolysis affects the strength parameters of polylactide-polyethylene samples as well as photodegradation. By the differential scanning calorimetry it is determined that the melting point of polylactide decreases by 2-4 °C, the glass transition temperature - by 1-3 °C, while the degree of crystallinity increases by 3-6%. In the process of ozonolysis, the thermophysical characteristics of PLA/LDPE have changed.


2020 ◽  
Vol 26 (10) ◽  
pp. 1761-1770
Author(s):  
Isaac Ferreira ◽  
Carolina Melo ◽  
Rui Neto ◽  
Margarida Machado ◽  
Jorge Lino Alves ◽  
...  

Purpose The purpose of this study is to evaluate and compare the mechanical performance of FFF parts when subjected to post processing thermal treatment. Therefore, a study of the annealing treatment influence on the mechanical properties was performed. For this, two different types of Nylon (PA12) were used, FX256 and CF15, being the second a short fibre reinforcement version of the first one. Design/methodology/approach In this study, tensile and flexural properties of specimens produced via FFF were determined after being annealed at temperatures of 135°C, 150°C or 165°C during 3, 6, 12 or 18 h and compared with the non-treated conditions. Differential scanning calorimetry (DSC) was performed to determine the degree of crystallinity. To evaluate the annealing parameters’ influence on the mechanical properties, a full factorial design of experiments was developed, followed by an analysis of variance, as well as post hoc comparisons, to determine the most significative intervening factors and their effect on the results. Findings The results indicate that CF15 increased its tensile modulus, strength, flexural modulus and flexural strength around 11%, while FX256 presented similar values for tensile properties, doubling for flexural results. Flexural strain presented an improvement, indicating an increased interlayer behaviour. Concerning to the DSC analysis, an increase in the degree of crystallinity for all the annealed parts. Originality/value Overall, the annealing treatment process cause a significant improvement in the mechanical performance of the material, with the exception of 165°C annealed specimens, in which a decrease of the mechanical properties was observed, resultant of material degradation.


2016 ◽  
Vol 848 ◽  
pp. 89-93 ◽  
Author(s):  
Zhi Gang Wang ◽  
Wen Hao Xi ◽  
Jing Bo Zhou ◽  
Jia Ming Xu ◽  
Guang Li

Responding to the resource waste and environmental damage, the recycled Polyethylene Terephthalate (PET) fibers were successfully obtained from waste PET textiles using a PFI mill. The high density polyethylene (HDPE)-based composites reinforced with recycled PET fibers were manufactured by melting blend. The mechanical properties of the composites were investigated by mechanical property test. The thermal stability and crystallinity were analyzed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), and their microstructures were characterized by Scanning Electron Microscopy (SEM). The mechanical properties of the composites indicated the significant improvements in tensile, flexural and impact properties by increasing the recycled PET fibers to 20wt%. The morphological and structural results showed that the recycled PET fibers dispersed well in HDPE matrix with the help of PE-g-MAH as a compatibilizer. The thermal analysis revealed that the degree of crystallinity and crystallizing rate tended to increase, while the thermal stability remained stable. In addition, using PFI mill in dealing with the waste textiles will help open new ways for recycling of waste textiles.


1993 ◽  
Vol 5 (4) ◽  
pp. 317-325
Author(s):  
A A Mehmet-Alkant ◽  
J N Hayt ◽  
D J Blundell ◽  
D G Parker

Thermal and wide-angle x-ray scattering (wAxs) studies of a new set of copolymers of polyether ether ketone (PEEK) with ether diphenyl ether ketone (EDEK) have been undertaken. The copolymerization modifies the properties of PEEK. At low levels of comonomer content the incorporation of the comonomer unit lowers the melting temperature and reduces the degree of crystallinity. At higher levels the melting point increases towards that of the PEDEK homopolymer. The x-ray structure is very similar to that of PEEK, consistent with rejection of the comonomer at low levels of comonomer content. At high levels the structure is very similar to that of PEDEK while at intermediate levels the structure is found to 'swtich' from that of PEEK to that of PEDEK, consistent with co-crystallization of the two monomer units.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 99
Author(s):  
Konstantinos N. Raftopoulos ◽  
Edyta Hebda ◽  
Anna Grzybowska ◽  
Panagiotis A. Klonos ◽  
Apostolos Kyritsis ◽  
...  

A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document