scholarly journals Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 541 ◽  
Author(s):  
Martin Jehser ◽  
Gerhard Zifferer ◽  
Christos Likos

Single and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages σ , as well as chain lengths N and brush separations D, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of gyration R g , the shape as asphericity δ ∗ , and orientation β ∗ , as well as density profiles as functions of distance from grafting plane ρ ( z ) , are studied. The effect of an added bond repulsion potential to suppress bond crossing in DPD is analyzed. Scaling laws of R g and its components R g ⊥ and R g ∥ are investigated. We find R g ∝ N ν , ν = 0.588 for surface coverages below the overlap surface concentration σ ∗ . For σ > σ ∗ we find R g ⊥ ∝ N ν ⊥ , ν ⊥ ≅ 1 and R g ∥ ∝ N ν ∥ , ν ∥ = 1 / 2 of ring brushes with the standard DPD model and ν ∥ ≅ 2 / 5 with added bond repulsion. The σ dependence of the radius of gyration was found to be R g ∝ σ μ with μ = 1 / 3 for surface coverages grater than σ ∗ . The perpendicular component R g ⊥ scales independent of the bond repulsion potential as R g ⊥ ∝ σ μ ⊥ , μ ⊥ = 1 / 3 , whereas the scaling of the parallel component exhibits a topological repulsion dependence R g ∥ ∝ σ μ ∥ , μ ∥ = − 1 / 12 for standard DPD and μ ∥ = − 1 / 6 for bond repulsion.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 397 ◽  
Author(s):  
Ramin Zakeri ◽  
Moslem Sabouri ◽  
Akbar Maleki ◽  
Zahra Abdelmalek

In this paper, the effect of Magneto Hydro-Dynamics (MHD) on a polymer chain in the micro channel is studied by employing the Dissipative Particle Dynamics simulation (DPD) method. First, in a simple symmetric micro-channel, the results are evaluated and validated for different values of Hartmann (Ha) Number. The difference between the simulation and analytical solution is below 10%. Then, two types of polymer chain including short and long polymer chain are examined in the channel and the effective parameters such as Ha number, the harmony bond coefficient or spring constant (K), and the length of the polymer chain (N) are studied in the MHD flow. It is shown that by increasing harmony bond constant to 10 times with Ha = 20, the reduction of about 80% in radius of gyration squared, and half in polymer length compared to Ha = 1 would occur for both test cases. For short and long length of polymer, proper transfer of a polymer chain through MHD particles flow is observed with less perturbations (80%) and faster polymer transfer in the symmetric micro-channel.


2018 ◽  
Vol 107 (1) ◽  
pp. 39-54
Author(s):  
Chunli Wang ◽  
Xiaoyu Yang ◽  
Jiangang He ◽  
Fangxin Wei ◽  
Zhong Zheng ◽  
...  

Abstract To explore the diffusion behavior of 75Se(IV) in Beishan granite (BsG), the influences of temperature, oxygen condition and ionic strength were investigated using the through-diffusion experimental method. The effective diffusion coefficient De of 75Se(IV) in BsG varied from 4.21×10−14 m2/s to 3.19×10−13 m2/s in our experimental conditions, increased with increasing temperature. The formation factor Ff of BsG was calculated to be nearly constant in the range of temperatures investigated, suggesting that the inner structure of BsG had no significant change in the temperature range of 20–55°C. Meanwhile, the De values of 75Se(IV) in BsG under anaerobic condition was significantly larger than that under aerobic condition, which may be attributed to the difference in the sorption characteristics and species distribution of Se and pH values. Moreover, the diffusion of 75Se(IV) was promoted with ionic strength increased from 0.01 M to 0.1 M, and then decreased at 0.5 M, mainly due to the combined effects of reduced double layers with increased ionic strength and increase of the solution viscosity at higher ionic strength.


2007 ◽  
Vol 1049 ◽  
Author(s):  
Jeffrey B. Sokoloff

AbstractIt is shown using a method based on the mean field theory of Miklavic Marcelja that it should be possible for osmotic pressure due to the counterions associated with the two polyelectrolyte polymer brush coated surfaces to support a reasonable load (i.e., about 105 Pa) with the brushes held sufficiently far apart to prevent entanglement of polymers belonging to the two brushes, thus avoiding what is likely to be the dominant mechanisms for static and dry friction.


2021 ◽  
Author(s):  
Jan Benáček ◽  
Marian Karlický

<p>We study how hot plasma that is released during a solar flare can be confined in its source and interact with surrounding colder plasma. The X-ray emission of coronal flare sources is well explained using Kappa velocity distribution. Therefore, we compare the difference in the confinement of plasma with Kappa and Maxwellian distribution. We use a 3D Particle-in-Cell code, which is large along magnetic field lines, effectively one-dimensional, but contains all electromagnetic effects. In the case with Kappa distribution, contrary to Maxwellian distribution, we found formation of several thermal fronts associated with double-layers that suppress particle fluxes. As the Kappa distribution of electrons forms an extended tail, more electrons are not confined by the first front and cause formation of multiple fronts. A beam of electrons from the hot part is formed at each front; it generates return current, Langmuir wave density depressions, and a double layer with a higher potential step than in the Maxwellian case. We compare the Kappa and Maxwellian cases and discuss how these processes could be observed.</p>


1979 ◽  
Vol 34 (1-2) ◽  
pp. 20-26 ◽  
Author(s):  
Ingrid Pilz ◽  
Karin Goral ◽  
Friedrich v. d. Haar

Abstract The quaternary structure of the phenylalanyl-tRNA synthetase and its complex with tRNAPhe was studied in dilute solutions by small angle X-ray scattering. For the free synthetase the radius of gyration was determined as 5.5 nm, the volume 523 nm3, the maximum diameter 17.5 nm and the molecular weight as 260 000 using an isopotential specific volume of 0.735. The overall shape could be best approximated by a flat cylinder with dimensions 18.2 nm X 11.5 nm X 4 nm ; the loose structure was approximated by building up the cylinder by spheres (diameter 4.2 nm).The corresponding parameters of the enzyme tRNA complex were the following: radius of gyration 5.9 nm, volume 543 nm 3, maximum diameter 21 nm and molecular weight 290 000. These parameters suggest an 1:1 complex, whereby it must be assumed that the tRNA molecule is attached in the extension of the longer axis. From the difference in the distance distribution functions of the free enzyme and the complex it is evident that we have to assume a change of conformation (contraction) of the enzyme upon the binding of the specific tRNA.


2013 ◽  
Vol 315 ◽  
pp. 399-403 ◽  
Author(s):  
Nurulsaidatulsyida Sulong ◽  
Anika Zafiah Mohd Rus

Treatment on the exposed surface to the environmental attack was studied based on biopolymer coating from waste cooking oil doped with a superhydrophilic filler of Titanium Dioxide (TiO2), known as TOP. TOP was found to affect the physical properties of the coated concrete surface in a systematic way. Contact angle measurements are interpreted with respect to nanoand micro-features existing on the surface of the water repellent superhydrophilic filler filled bio-polymer composite coating. The smooth coated surfaces of polymer filled or doped with superhydrophobic filler shows the systematic increasing static Waste Contact Angle, WCA (θst) and revealed that polymer filled superhydrophobic fillers by only 2.0 % shows the ability to form superhydrophobicity property. Scanning Electron Microscope (SEM) pictures revealed the difference between the concrete surface roughness of concrete biopolymer with and without TOP coating is to provide self-cleaning concrete biopolymer coating based on two principal ways: (1) the development of surface coating of semiconducting photocatalytic superhydrophilic. (2) If such a superhydrophilic is illuminated by light, then grease, dirt and organic contaminants will be decomposed and can easily be swept away by rain.


2013 ◽  
Vol 7 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. Grinsted

Abstract. I assess the feasibility of using multivariate scaling relationships to estimate glacier volume from glacier inventory data. Scaling laws are calibrated against volume observations optimized for the specific purpose of estimating total global glacier ice volume. I find that adjustments for continentality and elevation range improve skill of area–volume scaling. These scaling relationships are applied to each record in the Randolph Glacier Inventory, which is the first globally complete inventory of glaciers and ice caps. I estimate that the total volume of all glaciers in the world is 0.35 ± 0.07 m sea level equivalent, including ice sheet peripheral glaciers. This is substantially less than a recent state-of-the-art estimate. Area–volume scaling bias issues for large ice masses, and incomplete inventory data are offered as explanations for the difference.


1983 ◽  
Vol 126 ◽  
pp. 491-506 ◽  
Author(s):  
Arijit Bose ◽  
Harvey J. Palmer

When a liquid evaporates under vacuum, its free surface is potentially unstable to local variations in evaporative flux, surface depressions being produced by the recoil force of the departing vapour and sustained convection in the liquid being driven by the shearing action of the vapour on the distorted liquid surface. For a binary mixture, local variations in evaporative flux may be produced by fluctuations in both surface concentration and temperature. With the aid of linear hydrodynamic-stability theory, this paper examines the extents to which key mass-transfer properties affect the interfacial stability of the system. The mass-transfer aspects that distinguish this problem from its heat-transfer analogue centre on the dependence of relative volatility on temperature and composition as well as the importance of the bulk-flow term in Fick's law. Results indicate that the stability criteria for interfacial convection are extremely sensitive to the difference in volatility between the two components, that the destabilizing effects of surface concentration and temperature on evaporative flux are additive in determining stability limits, and that for certain operating pressures spontaneous convection can only be induced by adverse concentration gradients. Attention is limited to low-surface-tension mixtures for which there are no concentration effects on surface tension (Marangoni instability).


Sign in / Sign up

Export Citation Format

Share Document