scholarly journals Glycidyl Methacrylate-Emulsion Styrene Butadiene Rubber (GMA-ESBR)/Silica Wet Masterbatch Compound

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1000 ◽  
Author(s):  
Hyunsung Mun ◽  
Kiwon Hwang ◽  
Eunho Yu ◽  
Woong Kim ◽  
Wonho Kim

In the tire industry, solution styrene butadiene rubber (SSBR), which can introduce a functional group with good reactivity to silica at chain ends, is used to increase rolling resistance performance by considering fuel economy. However, this is not environmentally friendly because SSBR uses an organic solvent for polymerization, and it is difficult to increase its molecular weight. Functionalized emulsion SBR (ESBR) can solve the problems of SSBR. The molecular weight of ESBR molecules can be easily increased in an eco-friendly solvent, i.e., water. A functionalized ESBR introduces a functional group with good reactivity to silica by introducing a third monomer during polymerization. In this field, glycidyl methacrylate (GMA) has been reported to show the best properties as a third monomer. However, for GMA-ESBR, the viscosity is high and processability is disadvantageous. Therefore, we polymerized GMA-ESBR and manufactured silica compounds to clarify the causes of these problems. In addition, wet masterbatch (WMB) technology, which is a new compound manufacturing method, was applied to manufacture the silica compound, and the physical properties are compared with those of a dry masterbatch. The results clarified the problem of GMA-ESBR, which could be solved by using WMB technology.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2122 ◽  
Author(s):  
Javier Araujo-Morera ◽  
Marianella Hernández Santana ◽  
Raquel Verdejo ◽  
Miguel Angel López-Manchado

Current regulations demand tires with long lifetime and reduced fuel consumption without sacrificing car safety. However, tire technology still needs to reach a suitable balance between these three indicators. Here, we address them by developing a self-healing tire compound using styrene–butadiene rubber (SBR) as the matrix and reclaimed tire waste as the sustainable filler. The addition of ground tire rubber (GTR) to the matrix simultaneously improved the rolling resistance and maintained both wet grip and healing ability. We provide an in-depth analysis of the healing behavior of the material at a scale close to the relevant molecular processes through a systematic dynamic-mechanical and dielectric analysis. We found that SBR and SBR/GTR compounds show a complete recovery of stiffness and relaxation dynamics after being damaged by cyclic deformation, resulting in a heterogeneous repaired rubber network. This new development could well overcome the so-called magic triangle of tires, which is certainly one of the key objectives of the tire industry.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 603-625 ◽  
Author(s):  
Tian Liang ◽  
Avraam I Isayev

The ultrasonic treatment of styrene-butadiene rubber (SBR)/butadiene rubber (BR) 50/50 blend in single screw extruder was carried out at amplitudes up to 10 μm. The untreated and treated SBR/BR blends were mixed with carbon black (CB), silica, and silica/silane to prepare 50/50/60 compounds. It was found that ultrasonic power consumption increased and die pressure reduced with the increase of ultrasonic amplitude, indicating a potential to increase extrusion output rate with the aid of ultrasound. Molecular weight of blends treated at 3.5 μm increased, and high molecular weight tail was observed at 5, 7.5, and 10 μm. Solvent extraction experiments showed the formation of gel in blends treated at 7.5 and 10 μm. No gel was observed in blends untreated and treated at 3.5 and 5 μm. SBR/BR/silica vulcanizates prepared from the blend treated at 5 μm showed the reduced loss tangent at −30°C, 0°C, and 60°C, predicting a lower snow, wet traction, and rolling resistance. Reduced loss tangent after ultrasonic treatment was a result of reduced filler flocculation. The tensile strength and elongation at break of all treated SBR/BR and SBR/BR/CB vulcanizates treated at 3.5 and 5 μm increased. Modulus 100% elongation (M100) of vulcanizates prepared from SBR/BR/silica treated at 5 μm was also increased.


Author(s):  
Oleg K. Garishin ◽  
◽  
Anton Y. Beliaev ◽  

The work is devoted to the study of nanocomposites based on synthetic (styrene-butadiene) rubber with different fillers not previously used. The issue of using composites with alternative fillers is being investigated. The results of experimental testing and analysis of thermo-visco-elastic behav-ior of styrene-butadiene rubbers filled by various mineral particles of micro and nanosize, as well as pyrolysis products of organic food waste, are presented. The filled elastomers discussed in this work are mainly used in the tire industry to improve the performance of tires. All samples were tested on a dynamo-mechanical analyzer (DMA). Temperature and frequency dependences of the dynamic modulus and loss modulus are plotted for each of the composites. The frequency charac-teristics corresponded to the real range of rotation speeds of the car wheel, and the temperature var-ied from –50 to +50ºC. A comparative analysis of the results obtained was carried out. The struc-tural mechanisms of the filler are not investigated. It is assumed that the principles of operation of the investigated fillers at the structural level are similar to those described in many works for clas-sical fillers. Based on the test results a conclusion about the preferable operating conditions for the considered materials was made.


2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


2016 ◽  
Vol 89 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Qingguo Wang ◽  
Jingrui Liu ◽  
Quande Cui ◽  
Xiao Xiao

ABSTRACT How to improve the wet skid resistance of rubber composites for tire tread while decreasing the rolling resistance is very important for both rubber researchers and industry. The irradiation-vulcanized elastomer particles, ultrafine fully-vulcanized powder nitrile butadiene rubber (UFPNBR), having the diameter of about 80 nm, were studied on modifying the dynamic mechanical properties of styrene butadiene rubber/natural rubber (SBR/NR) composites for tire tread. It is notable that the UFPNBR particles can improve the tanδ values of SBR/NR composites in a temperature range from −10 to 20 °C and decrease the tanδ values in the temperature range from 50 to 70 °C simultaneously, which indicates that the UFPNBR particles not only can improve the wet skid resistance but also can reduce the rolling resistance of the SBR/NR composites. On the other hand, the UFPNBR-modified SBR/NR composites also have good dynamic properties for safety operation of tires at high temperature and good tensile strength, tear strength, and fatigue properties in the range of 8 phr UFPNBR loadings.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1527
Author(s):  
Liwei Li ◽  
Haijun Ji ◽  
Hui Yang ◽  
Liqun Zhang ◽  
Xinxin Zhou ◽  
...  

In response to increasingly stringent requirements for the sustainability and environmental friendliness of the rubber industry, the application and development of bio-based elastomers have received extensive attention. In this work, we prepared a new type of bio-based elastomer poly(dibutyl itaconate-butadiene) copolymer (PDBIB) nanocomposite using carbon black and non-petroleum-based silica with a coupling agent. Using dynamic thermodynamic analysis (DMTA) and scanning electron microscope (SEM), we studied the effects of feed ratio on dynamic mechanical properties, micro morphology, and filler dispersion of PDBIB composites. Among them, silica-reinforced PDBIB60 (weight ratio of dibutyl itaconate to butadiene 40/60) and carbon black-reinforced PDBIB70 (weight ratio of dibutyl itaconate to butadiene 30/70) both showed excellent performance, such as tensile strength higher than 18 MPa and an elongation break higher than 400%. Compared with the widely used ESBR, the results showed that PDBIB had better rolling resistance and heat generation than ESBR. In addition, considering the development of green tires, we compared it with the solution polymerized styrene–butadiene rubber with better comprehensive performance, and analyzed the advantages of PDBIB and the areas to be improved. In summary, PDBIB prepared from bio-based monomers had superior performance and is of great significance for achieving sustainable development, providing a direction for the development of high-performance green tire and holding great potential to replace petroleum-derived elastomers.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


Sign in / Sign up

Export Citation Format

Share Document