scholarly journals Numerical Studies of the Viscosity of Reacting Polyurethane Foam with Experimental Validation

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 105
Author(s):  
Kay Schäfer ◽  
Daisy Nestler ◽  
Jürgen Tröltzsch ◽  
Ikenna Ireka ◽  
Dariusz Niedziela ◽  
...  

Products made of polyurethane foam are manufactured by the chemical reaction of various low-viscosity raw materials and additives. The diversity of different formulations to meet the requirements of the market makes the characterization of their processing and flow properties important for a simple and error-free production. The modeling and simulation of such processes are equally of great importance. This provides additional findings without the expense of real tests and makes it easier to design components. The work described in this paper was carried out against this background. An experimental setup using a rheometer was developed to determine the flow and curing properties of reacting polyurethane foam reproducibly with comparable expansion conditions to industrial processes. The experiment was mathematically modelled to investigate the rheology of reacting polyurethane foams. The mathematical framework consists of coupled, non-linear, partial differential equations for the dynamics and the heat transfer processes in the system. These are solved numerically in 3D using finite volume techniques under adequate physical conditions. The accuracy of two viscosity laws according to the state of the art and their novel combination were investigated in this context. The proposed viscosity model of this study provides accurate results compared to the experiment.

2019 ◽  
Vol 803 ◽  
pp. 346-350
Author(s):  
Jessalyn C. Grumo ◽  
Lady Jaharah Y. Jabber ◽  
Arnold A. Lubguban ◽  
Rey Y. Capangpangan ◽  
Arnold C. Alguno

We report on the rigid polyurethane foam (RPUF) with varying amount of blowing agent. The effects of blowing agent in the formation of polyurethane will be characterized using scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. SEM images revealed that varying the amount of blowing agent will significantly change the surface morphology of the resulting RPUF. The average cell size of the RPUF increases with increasing amount of blowing agent. Moreover, FTIR results revealed the presence of functional group related to formation of urethane bonds such as N-H, C=O, C=N and C-O-C stretching suggesting that polyurethane foam was successfully synthesized. This simple and straightforward process of RPUF using water as blowing agent will be economical.


2020 ◽  
Vol 56 (6) ◽  
pp. 630-645 ◽  
Author(s):  
Ibrahim Sendijarevic ◽  
Karol W Pietrzyk ◽  
Christi M. Schiffman ◽  
Vahid Sendijarevic ◽  
Alper Kiziltas ◽  
...  

The objective of this study was to produce a polyol from spent coffee grounds via acid liquification process that meets performance requirements for use in polyurethane applications. The spent coffee grounds based polyol was characterized and evaluated on a fully catalyzed model rigid polyurethane foam system. The pH of the polyol was 6.8, acid value 4.12 mg KOH/g, and hydroxyl value 302.6 mg KOH/g, which are in the range of polyols used in rigid polyurethane foams. The reactivity study confirmed enhanced reactivity of the spent coffee grounds polyol compared to standard sucrose-glycerol initiated polyether polyols, which can be attributed to higher content of primary reactive hydroxyls. Scanning electron microscopy microphotographs of the foams prepared with 10%, 20%, and 30% spent coffee grounds polyol based on total polyols in the formulation revealed a drained dodecahedron type cell structure with intact cell windows as a clear indication of the closed cell structure typical for the rigid polyurethane foams used in thermal insulation applications. Results of this study confirmed the feasibility to produce polyols from spent coffee grounds with performance characteristics suitable for polyurethane application. The fact that spent coffee grounds are readily available industrial waste generated in instant coffee manufacturing, makes this biomass residue a sustainable source of raw materials for scalable production of polyols for polyurethanes.


Author(s):  
А. Кочерженко ◽  
A. Kocherzhenko

One of the most important advantages of polyurethane foam is the ability of single-stage production. Foaming and curing of this heat insulation does not require the supply of heat in connection with the exothermic fusion reaction that occurs when two or more liquid components are mixed, with simultaneous adhering of polyurethane foam to various surfaces due to good adhesion to almost any material. At the same time, this foam polymer has a low density and is able to withstand quite large loads. Thermal insulation material with improved performance properties can be obtained with a careful selection of the granulometric and chemical composition of raw materials. This paper presents a brief overview of the foaming and shaping of polyurethane, examines the structure of developed composite insulation, and establishes the dependence of the foaming ratio of polyurethane foam on the granulometric composition of fillers, including man-made (waste mining industry Stoylensky GOK). The research results show that in the process of forming filled polyurethane foams, chemical reactions between the components of the polyurethane foam and the elements of the fillers do not occur. The foaming process depends mainly on the granulometry of the filler and its percentage in the total mass of polyurethane foam.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1736
Author(s):  
Gabriel Kiss ◽  
Gerlinde Rusu ◽  
Geza Bandur ◽  
Iosif Hulka ◽  
Daniel Romecki ◽  
...  

An industrially manufactured recycled polyol, obtained by acidolysis process, was for the first time proved to be a possible replacement of the reference fossil-based polyol in a low-density formulation suitable for industrial production of flexible polyurethane foams. The influence of increasing recycled polyol amounts on the properties of the polyurethane foam has been studied, also performing foam emission tests to evaluate the environmental impact. Using 10 pbw recycled polyol in the standard formulation, significant differences of the physical properties were not observed, but increase of the recycled polyol amount to 30 pbw led to a dramatic decrease of the foam air flow and a very tight foam. To overcome this drawback, N,N′-bis[3-(dimethylamino)propyl]urea was selected as tertiary amine catalyst, enabling the preservation of foam properties even at high recycled polyol level (30 pbw). Foam emission data demonstrated that this optimized foam formulation also led to an important reduction of volatile organic compounds. The results open the way for further optimization studies in low-density flexible polyurethane foam formulations, to increase the reutilization of the polyurethane waste and reduce the amount of petroleum-based raw materials.


1993 ◽  
Vol 47 (2) ◽  
pp. 173-179 ◽  
Author(s):  
James A. de Haseth ◽  
Jennifer E. Andrews ◽  
John V. McClusky ◽  
Ralph D. Priester ◽  
Matthew A. Harthcock ◽  
...  

The use of a mid-infrared transmitting fiber to monitor the cure process of a polyurethane foam is described. A chalcogenide fiber was situated between the spectrometer and a remote detector, but passed through the center of a polyurethane foam. This fiber was used as an internal reflectance element to observe changes in the polyurethane curing process. The appearance and disappearance of absorbances in the NH-stretching, carbonyl stretching (free urea and urethane, hydrogen-bonded urethane, and monodentate and bidentate hydrogen-bonded urea), isocyanate, and isocyanurate regions were monitored. These changes provided information about the reaction kinetics and morphological development of the foam.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 366 ◽  
Author(s):  
José María Encinar ◽  
Sergio Nogales-Delgado ◽  
Nuria Sánchez ◽  
Juan Félix González

The transesterification of rapeseed and castor oil methyl esters with different alcohols (2-ethyl-1-hexanol, 1-heptanol and 4-methyl-2-pentanol) and titanium isopropoxide as a catalyst, to produce biolubricants, was carried out. Parameters such as temperature, alcohol/methyl ester molar ratio, and catalyst concentration were studied to optimize the process. The reaction evolution was monitored with the decrease in FAME concentration by gas chromatography. In general, the reaction was almost complete in two hours, obtaining over 93% conversions. All the variables studied influenced on the reaction yields. Once the optimum conditions for the maximum conversion and minimum costs were selected, a characterization of the biolubricants obtained, along with the study of the influence of the kind of alcohol used, was carried out. The biolubricants had some properties that were better than mineral lubricants (flash points between 222 and 271 °C), needing the use of additives when they do not comply with the standards (low viscosity for rapeseed biolubricant, for instance). There was a clear influence of fatty acids of raw materials (oleic and ricinoleic acids as majority fatty acids in rapeseed and castor oil, respectively) and the structure of the alcohol used on the final features of the biolubricants.


2010 ◽  
Vol 152-153 ◽  
pp. 131-135
Author(s):  
Jian Li ◽  
Xun Zhang Yu ◽  
Kai Zhang

In this article, konjac flour, super absorptive resin and pellet urea were added into flexible polyurethane foamed plastic with polyether polyol and isocyanate as the raw materials by a new water-foamed technology to manufacture a kind of absorptive and biodegraded polyurethane foamed fertilizer. Polyurethane foam was used as a carrier material and konjac flour was used as a biodegradable agent. The results showed that the slow-release velocity of urea could be controlled by regulating the densities of polyurethane foams, the content of konjac flour and super absorptive resin. The carrier material could be degraded konjac flour by naturally.


2019 ◽  
Author(s):  
Chem Int

Recycling is a crucial area of research in green polymer chemistry. Various developments in recycling are driven by Environmental concerns, interest in sustainability and desire to decrease the dependence on non-renewable petroleum based materials. Polyurethane foams [PUF] are widely used due to their light weight and superior heat insulation as well as good mechanical properties. As per survey carried Polyurethane Foam Association, 12 metric tonnes of polyurethane foam are discharged during manufacturing and/or processing and hence recycling of PUF is necessary for better economics and ecological reasons. In present study, rejects of PUF is subjected to reaction with a diethylene amine in presence of sodium hydroxide [NaOH] as catalyst, as a result depolymerised product containing hydroxyl and amine groups is obtained. Conventional and Microwave reaction for depolymerizing polyurethane foam have been carried, and best results are obtained by Microwave reaction. Further depolymerised product with hydroxyl and amine functionalities are reacted with bis (2-hydroxyethyl terephthalate) [BHET] obtained by recycling polyethylene terephthalate [PET] and sebacic acid, with stannous oxalate [FASCAT 2100 series] as catalyst to obtain Polyester amides. These Polyester amides having hydroxyl and amino groups in excess are cured with isocyanates-hexamethylene diisocyanate biuret [HDI biuret] and isophorone diisocyanate [IPDI] for coating applications. The coated films are characterized using physical, mechanical and chemical tests, which shows comparable physical, mechanical properties but alkali resistance is poor.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1497 ◽  
Author(s):  
Isabel Santamaría Vicario ◽  
Lourdes Alameda Cuenca-Romero ◽  
Sara Gutiérrez González ◽  
Verónica Calderón Carpintero ◽  
Ángel Rodríguez Saiz

The properties and the behaviour of plaster mortars designed with Polyurethane Foam Waste (PFW) are studied in this investigation. A characterization of the mixtures is completed, in accordance with the technical specifications of European Norms. The incorporation of polyurethane waste foam can yield porous and lighter mortars, with better resistance to water-vapour permeability, although with weaker mechanical strength and higher levels of absorbency. Nevertheless, suitable mechanical strengths were achieved, resulting in a new material that is compliant with the requirements of the construction industry. The use of PFW in the the manufacture of gypsum mortars for construction reduces the consumption of natural resources and, at the same time, recovers an industrial waste that is otherwise difficult to recycle.


Sign in / Sign up

Export Citation Format

Share Document