scholarly journals Cutin from Solanum Myriacanthum Dunal and Solanum Aculeatissimum Jacq. as a Potential Raw Material for Biopolymers

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1945
Author(s):  
Mayra Beatriz Gómez-Patiño ◽  
Rosa Estrada-Reyes ◽  
María Elena Vargas-Diaz ◽  
Daniel Arrieta-Baez

Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of S. aculeatissimum and S. myriacanthum were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS 13C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of S. aculeatissimum cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while S. myriacanthum cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.

2021 ◽  
Vol 10 (1) ◽  
pp. 37-48
Author(s):  
Sijia Li ◽  
Chun Shao ◽  
Zhikun Miao ◽  
Panfang Lu

Abstract Waste biomass can be used as a raw material for food packaging. Different concentrations of gelatin (GEL) were introduced into the leftover rice (LR) system to form an interpenetrating polymer network (IPN) for improving the properties of the films. The structure and morphology of films were evaluated by Fourier transform infrared, scanning electron microscopy, and atomic force microscopy, which showed good compatibility between LR and GEL. The moisture content and oil absorption rate of IPN films were down by 105% and 182%, respectively, which showed better water and oil resistance than the LR film. In addition, increasing GEL concentration led to enhancement in the tensile strength of films from 2.42 to 11.40 MPa. The water contact angle value of the IPN films (117.53°) increased by 147% than the LR film (47.56°). The low haze of IPN films was obtained with the increment of the mutual entanglement of LR and GEL. The 30–50% GEL addition improved the water vapor barrier and thermal stability properties of the IPN films. This study highlights that LR as waste biomass can have a practical application in food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


2007 ◽  
Vol 342-343 ◽  
pp. 221-224
Author(s):  
Jin Suk Bae ◽  
Ga Young Jun ◽  
Akihiko Kikuchi ◽  
Teruo Okano ◽  
Chang Hyun Ahn ◽  
...  

In this work, we developed a novel patterned co-culture method with thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) and poly(N-ρ-vinylbenzyl-Ο-β-D-galactopyranosyl-(1→ 4)-D-gluconamide) (PVLA) inducing active hepatocyte attachment. Patterned graft of PIPAAm onto PS dishes was carried out by electron beam irradiation using cover-glass as a photomask. PVLA was only coated onto PIPAAm-ungrafted domain because of hydrated hydrophilic property of PIPAAm at below the LCST. Analysis by attenuated total reflection-Fourier transform infrared and electron spectroscopy for chemical analysis revealed that PIPAAm and PVLA were successfully grafted and coated on surfaces of PS dishes. PIPAAm-grafted surface exhibited decreasing contact angle by changing temperature from 37 to 20°C, while PVLA-coated PS and non-treated PS had negligible contact angle changes with temperature alternation. Atomic force microscopy (AFM) results showed that PIPAAm-grafted and PVLA-coated PS had smoother surfaces than that of ungrafted PS dishes. After culture for 12 hours, hepatocytes were well attached on PVLA-coated domain. Hepatocytes adherent on PIPAAm-grafted domain were detached by decreasing temperature. And then, fibroblasts were seeded onto PIPAAm pattern-grafted domain. Fibroblasts were only attached and spread onto PIPAAm-grafted domain. Co-cultured hepatocytes showed better differentiated function of albumin expression compared to homotypic hepatocyte culture


Author(s):  
Zhou J ◽  
◽  
Dong Y ◽  
Ma Y ◽  
Zhang T ◽  
...  

Graphene Quantum Dots (GQDs) have been prepared by oxidationhydrothermal reaction, using ball-milling graphite as the starting materials. The prepared GQDs are endowed with excellent luminescence properties, with the optimum emission of 320nm. Blue photoluminescent emitted from the GQDs under ultraviolet light. The GQDs are ~3nm in width and 0.5~2 nm in thickness, revealed by high-resolution transmission electron microscopy and atomic force microscopy. In addition, Fourier transform infrared spectrum evidences the existence of carbonyl and hydroxyl groups, meaning GQDs can be dispersed in water easily and used in cellar imaging, and blue area inside L929 cells were clearly observed under the fluorescence microscope. Both low price of raw material and simple prepared method contribute to the high quality GQDs widespread application in future.


2019 ◽  
Vol 26 (1) ◽  
pp. 25-29
Author(s):  
Liga AVOTINA ◽  
Elina PAJUSTE ◽  
Marina ROMANOVA ◽  
Gennady ENICHEK ◽  
Aleksandrs ZASLAVSKIS ◽  
...  

Silicon nitride (Si3N4) in a form of single and multi-layer nanofilms is proposed to be used as a dielectric layer in nanocapacitors for operation in harsh environmental conditions. Characterization of surface morphology, roughness and chemical bonds of the Si3N4 coatings has an important role in production process as the surface morphology affects the contact surface with other components of the produced device. Si3N4 was synthesized by using low pressure chemical vapour deposition method and depositing single and multi-layer (3 – 5 layers) nanofilms on SiO2 and polycrystalline silicon (PolySi). The total thickness of the synthesized nanofilms was 20 – 60 nm. Surface morphology was investigated by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical bonds in the layers were identified by means of Fourier transform infrared spectrometry, attenuated total reflection (FTIR-ATR) method. (From the SEM and AFM images it was estimated that both single and multi-layer coatings are deposited homogenously. Si-N breathing and stretching modes are observed in FTIR spectra and the surface morphology is highly dependent on PolySi, therefore suggesting the decrease of the roughness of the bottom electrode for use in the nanocapacitors.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1069 ◽  
Author(s):  
Gabriele Nanni ◽  
José A. Heredia-Guerrero ◽  
Uttam C. Paul ◽  
Silvia Dante ◽  
Gianvito Caputo ◽  
...  

Poly(furfuryl alcohol) (PFA) is a bioresin synthesized from furfuryl alcohol (FA) that is derived from renewable saccharide-rich biomass. In this study, we compounded this bioresin with polycaprolactone (PCL) for the first time, introducing new functional polymer blends. Although PCL is biodegradable, its production relies on petroleum precursors such as cyclohexanone oils. With the method proposed herein, this dependence on petroleum-derived precursors/monomers is reduced by using PFA without significantly modifying some important properties of the PCL. Polymer blend films were produced by simple solvent casting. The blends were characterized in terms of surface topography by atomic force microscopy (AFM), chemical interactions between PCL and PFA by attenuated total reflection-Fourier transform infrared (ATR-FTIR), crystallinity by XRD, thermal properties by differential scanning calorimetry (DSC), and mechanical properties by tensile tests and biocompatibility by direct and indirect toxicity tests. PFA was found to improve the gas barrier properties of PCL without compromising its mechanical properties, and it demonstrated sustained antioxidant effect with excellent biocompatibility. Our results indicate that these new blends can be potentially used in diverse applications ranging from food packing to biomedical devices.


The Analyst ◽  
2013 ◽  
Vol 138 (22) ◽  
pp. 6746 ◽  
Author(s):  
Daniel Neubauer ◽  
Jochen Scharpf ◽  
Alberto Pasquarelli ◽  
Boris Mizaikoff ◽  
Christine Kranz

Author(s):  
Andrea Diana ◽  
Marcella Reguzzoni ◽  
Terenzio Congiu ◽  
Antonio Rescigno ◽  
Federica Sollai ◽  
...  

The byssus of Pinna nobilis, the largest bivalve mollusc in the Mediterranean Sea, was investigated by histochemistry, immunohistochemistry, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). At low magnification, the byssus threads appeared distinctively elliptical in cross-section, with a typical size approaching 50 x 25 micron and a featureless glassy appearance. Histochemical and immunohistochemical techniques confirmed the presence of elastic domains but the absence of collagen, which is known to be the main component in other molluscs. Ultrastructural analysis by TEM revealed the presence of at least two components within the thread, and an inner arrangement of straight, tightly packed longitudinal streaks. SEM observations while confirming the inner packing of straight, parallel subfibrils, suggested in the fracture surfaces the presence of unidentified substance which cemented together the same subfibrils and which was removed by exposure to extreme pH values. AFM micrographs added further evidence for the tight packing of subfibrils and provided some evidence of orthogonal, barely visible connecting structures. Finally, HCl or NaOH treatment left the subfibrils clean and free from any other component. 


2020 ◽  
Vol 21 (17) ◽  
pp. 6154
Author(s):  
Barbara Gieroba ◽  
Anna Sroka-Bartnicka ◽  
Paulina Kazimierczak ◽  
Grzegorz Kalisz ◽  
Izabela S. Pieta ◽  
...  

In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-β-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-β-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-β-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.


Sign in / Sign up

Export Citation Format

Share Document