scholarly journals Inhibitory Effects of Pectic Polysaccharide Isolated from Diospyros kaki Leaves on Tumor Cell Angiogenesis via VEGF and MMP-9 Regulation

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Jun Yeon Park ◽  
Myoung-Sook Shin

Persimmon leaves are an attractive source of phytochemicals with potential health benefits. However, there are only a few reports on the chemical properties and biological activity of the polysaccharide fractions (PLE-I–III) of persimmon leaves. We evaluated the angiogenesis-inhibiting ability of pectic-polysaccharides. The molecular weight of PLEs was determined using a high-performance size-exclusion chromatography system. Tube formation assay of human umbilical vein endothelial cells (HUVECs) was performed using Matrigel-coated 96-well plates. Matrix metalloproteinase (MMP-9), vascular endothelial growth factor (VEGF), PI3K, Akt, and p38 phosphorylation levels were determined using Western blotting; VEGF and MMP-9 transcript levels were measured using SYBR Green qRT-PCR. PLE-I–III significantly inhibited HUVEC tube formation at 12.5 and 25 μg/mL. Among them, PLE-II showed the strongest anti-tube formation activity, and the mRNA/protein expression of angiogenesis-related factors (VEGF/MMP-9) was significantly reduced by PLE-II. PLE-II also suppressed the phosphorylation of PI3K/AKT and p38, JNK, and NF-κB p65 in HUVECs. These results suggest that the polysaccharide PLE-II isolated from persimmon leaves inhibited VEGF and MMP-9 expression in HUVECs via regulation of PI3K/AKT, p38, JNK, and NF-κB p65 signaling pathways.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qin Yuan ◽  
Fei Yao ◽  
Liang Zhou ◽  
Guoqiang Liang ◽  
Xiudao Song ◽  
...  

Background. Clinically, Yu ping feng san (YPFS) has been extensively used as a medication for treating immune deficiency, and YPFS is combined with chemotherapy drugs to treat cancer, including hepatocellular carcinoma (HCC), lung cancer, and pancreatic cancer. Previous research has shown that YPFS has a therapeutic effect on HCC by improving the immunosuppressive state of the liver cancer microenvironment. The present study aimed to investigate the effect of YPFS on angiogenesis of HCC. Methods. High-performance liquid chromatography (HPLC) was used to certify the composition of YPFS. An orthotopic transplanted model of murine HCC was entrenched. Immunohistochemistry was used to observe the changes of the microvessel density (MVD). The MTT assay was used to detect the cell viability. ELISA was performed to analyze the expression of related factors. Western blot was used to analyze the protein expression. Tube formation assay was used to analyze the anti-angiogenic efficiency. Results. YPFS significantly reduced the tumor volume and weight, thus exerted the growth inhibitory effect. The level of MVD and VEGF was obviously decreased in YPFS-treated HCC-bearing mice, and the YPFS treatment also reduced the VEGF level in Hepa1-6 cells. Further study revealed that the expression of TSLP/TSLPR and p-STAT3/STAT3 was decreased by YPFS. The level of MVD and VEGF and the expression of TSLP/TSLPR and p-STAT3/STAT3 in tumor tissue and Hepa1-6 cells were suppressed by incubation with the anti-TSLP antibody, whereas treatment with the anti-TSLP antibody in YPFS-treated cells did not cause further significant inhibition compared with the cells treated only with YPFS. More importantly, YPFS inhibited proliferation, expression of p-STAT3/STAT3, and tube formation of HUVECs induced by TSLP. Conclusions. These results indicated that YPFS attenuated the activation of the TSLP-STAT3 signaling pathway by inhibiting the immune-related factor-TSLP, thereby inhibiting the formation of hepatic microvessels and exerting an anti-HCC effect.


2014 ◽  
Vol 3 (4) ◽  
pp. 63
Author(s):  
Luciano Pasqualoto Canellas ◽  
Riccardo Spaccini ◽  
Natalia De Oliveira Aguiar ◽  
Fabio Lopes Olivares

<p>In this work we have analyzed soil samples from Oxisols collected from two traditional communities, one formed by Guarany Indians at South of Brazil and other by African descendants on North of Rio de Janeiro State, Brazil. The content and fractional composition of humus was investigated and the isolated humic acids (HAs) were characterized by elemental composition, <sup>13</sup>C solid-state nuclear magnetic resonance, and high-performance size exclusion chromatography. The bioactivity of HAs was evaluated considering the effects on root growth of maize seedlings. Chemical properties from adjacent soils under native forest were used as control samples. The local field sites matching the traditional cropping requirements, were characterized by higher soil chemical fertility and soil organic matter hydrophobicity, as compared to the land plots considered as inadequate by rural peasants. The HAs from cropped soils revealed significant differences in respect to content, hydrophobicity, biostimulation and molecular dimension. Although all humic extracts promoted, both, root growth and the stimulation of lateral root emergence over control, the HAs from preferential local sites, revealed a larger bioactivity response on root stimulation even at lower concentration. The assessment of soil quality issued by local farmers, showed a valuable fitting with bio-chemical fertility indicators and SOM hydrophobicity.<strong></strong></p>


2020 ◽  
Author(s):  
M Centanni ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Alison Daines ◽  
Simon Hinkley ◽  
...  

© 2019 American Chemical Society. Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


2020 ◽  
Author(s):  
M Centanni ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Alison Daines ◽  
Simon Hinkley ◽  
...  

© 2019 American Chemical Society. Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


2020 ◽  
Vol 15 (6) ◽  
pp. 1934578X2093165
Author(s):  
Gang Yao ◽  
Jialei Xu ◽  
Xiang Wang ◽  
Jiaojaio Lu ◽  
Mi K. Chan ◽  
...  

Bupleurum chinense DC, a traditional medicinal plant in China that has many pharmacological effects, contains polysaccharide as one of its active components. In this study, we isolated and structurally characterized the polysaccharide from B. chinense. Water-soluble polysaccharides (termed WBCP) were extracted from the plant and fractionated by anion-exchange and size exclusion chromatographies. From this procedure, we obtained a homogeneous acidic polysaccharide (WBCP-A2) and determined its monosaccharide composition. Analysis by FT infrared and 13C NMR spectroscopies, along with enzymatic hydrolysis, indicated that WBCP-A2 is a pectic polysaccharide, composed of rhamnogalacturonan I, rhamnogalacturonan II, highly methyl-esterified homogalacturonan (HG), and either non- or low methyl-esterified HG domains. These different fractions may be covalently linked through HG segments to form the complex pectin molecules.


1984 ◽  
Vol 99 (4) ◽  
pp. 1545-1549 ◽  
Author(s):  
P A D'Amore ◽  
M Klagsbrun

Bovine retina and hypothalamus contain anionic endothelial cell mitogens that display unusual affinities for the negatively charged glycosaminoglycan heparin. Both growth factor activities are acidic polypeptides (pl's of 5.0) as determined by isoelectric focusing and DEAE-affinity chromatography. In spite of their anionic nature, the factors bound to heparin-Sepharose columns with high affinity and could be eluted only at high salt concentrations (0.9-1.1 M NaCl). The affinity of the retina-derived growth factor (RDGF) for heparin permitted a 15,000-fold purification of the mitogen in two steps: heparin-affinity chromatography and size exclusion high-performance liquid chromatography. RDGF and the anionic hypothalamus-derived factor (aHDGF) exhibit three major biochemical similarities including isoelectric point, (pl's of 5.0), heparin affinity (elution at 0.9-1.1 M NaCl) and molecular weight (18,000). Additionally, the two factors display similar biological activities, stimulating the proliferation of capillary and human umbilical vein endothelial and 3T3 cells but not vascular smooth muscle cells. We suggest that RDGF and aHDGF are related if not identical growth factor molecules.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Nina Bruun ◽  
Fiseha Tesfaye ◽  
Jarl Hemming ◽  
Meheretu Jaleta Dirbeba ◽  
Leena Hupa

Waste fish oils (FOs) and used cooking vegetable oils (UCOs) are increasingly becoming alternative renewable fuels. However, different physicochemical aspects of these renewable fuels, including the effect of storage, are not well-known. In this work, the effect of the storage period on physicochemical properties of selected samples of FOs and UCOs was investigated. The bio-oils were stored at 4 °C for up to five years before each experimentation. The chemical properties were characterized using capillary gas chromatography with flame ionization detection (GC-FID) and high-performance size exclusion chromatography including an evaporative light scattering detector (HPSEC-ELSD). Water contents and acid numbers of the bio-oils were determined using the Karl Fischer (KF) titration and the ASTM D 664 methods. Furthermore, the average heating values and surface tension of the bio-oils were determined. According to the results obtained, for all bio-oil types, the concentrations of polymerized triglycerides, diglycerides, and fatty acids and monoglycerides had increased during the storage periods. The physical properties of the bio-oils also showed a small variation as a function of the storage period. The overall results observed indicate that the deterioration of the physicochemical properties of bio-oils can be controlled through storage in dark, dry, and cold conditions.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 427-433 ◽  
Author(s):  
J. van Leeuwen ◽  
C. Chow ◽  
R. Fabris ◽  
N. Withers ◽  
D. Page ◽  
...  

To gain an improved understanding of the types of organic compounds that are recalcitrant to water treatment, natural organic matter (NOM) isolates from two drinking water sources (Mt. Zero and Moorabool reservoirs, Victoria, Australia) were separated into fractions of distinct chemical behaviour using resins. Four fractions were obtained from each water source and were organics absorbed to: (1) XAD-8 (very hydrophobic acids, VHA); (2) DAX-4 (slightly hydrophobic acids, SHA); (3) bound to an anion exchange resin (charged organics, CHAR); and (4) not absorbed or bound to resins (neutrals, NEUT). These fractions were then tested to determine the capacity of alum to remove them from water and to correlate this with the character of each isolate. The fractions were characterised by the application of high performance size exclusion chromatography (HPSEC), bacterial regrowth potential (BRP), trihalomethane formation potential (THMFP), pyrolysis gas-chromatography mass spectrometry (Py-GC-MS) and thermochemolysis. The highest removals of dissolved organic carbon (DOC) by alum treatment were in waters spiked with the CHAR fractions while the NEUT fractions were the most recalcitrant. The number average molecular weights (Mn) of DOC of the CHAR fractions before treatment were the highest, whilst those of the NEUT fractions were the lowest. After alum treatment, the Mn of the NEUT fractions were only slightly reduced. Results from Py-GC-MS and thermochemolysis indicate that the NEUT fractions had the highest relative proportion of saccharide derived organic material. Nonetheless, the BRP of waters spiked with the NEUT fractions differed markedly, indicating that organics recalcitrant to alum treatment can vary substantially in their chemical composition and capacity to support microbial growth.


Sign in / Sign up

Export Citation Format

Share Document