scholarly journals Large-Area Fabrication of Structurally Colored and Humidity Sensitive Composite Nanofilm via Ultrasonic Spray-Coating

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3768
Author(s):  
Sijun Li ◽  
Donghui Kou ◽  
Shufen Zhang ◽  
Wei Ma

Intelligent structural colors have received extensive attention in recent years due to their diverse applications. However, the large-area, uniform, and cost-effective fabrication of ultra-thin structural color films is still challenging. Here, for the first time, we design and employ an ultrasonic spray-coating technique with non-toxic, green nano-silica and polyvinylpyrrolidone as raw materials, to prepare structural color films on silicon wafers. Due to the addition of polyvinylpyrrolidone, the coffee-ring effect during droplet drying is suppressed and uniform composite films are formed. We further perform a detailed study of the influence of various processing parameters including silica/polyvinylpyrrolidone concentration, substrate temperature, nozzle-to-substrate distance, and number of spray-passes on film roughness and thickness. By increasing the number of spray-passes from 10 to 30, the film thickness from 120 to 340 nm is modulated, resulting in different colors, and large-area and uniform colors on commercial round silicon wafers with 15 cm diameter are achieved. The silica/polyvinylpyrrolidone composite films show strong hydrophilicity and are sensitive to humidity changes, leading to quickly tunable and reversible structural colors. Quartz crystal microbalance with dissipation demonstrates water vapor adsorption and condensation on the nanofilm when increasing environmental humidity. Thereby, ultrasonic spray-coating as a novel film fabrication technique provides a feasible scheme for large-area preparation of intelligent structural colors.

2017 ◽  
Vol 29 (3) ◽  
pp. 427-435 ◽  
Author(s):  
Xiaohong Yuan ◽  
Wenzheng Xu ◽  
Fenglin Huang ◽  
Qingqing Wang ◽  
Qufu Wei ◽  
...  

Purpose Structural color is more brilliant in color, more resistant to sunshine and will not fade away with time, and more environmental friendly than traditional dyes and pigments. The purpose of this paper is to prepare structural colors of fabrics coated with Ag/TiO2 composite films by magnetron sputtering, and analyze the relationship between the colors and the thicknesses of TiO2 films in Ag/TiO2 composite films. Design/methodology/approach Preparation of Ag/TiO2 composite films by magnetron sputtering and their deposition on textiles were investigated. The chemical compositions and surface morphology of Ag/TiO2 composite films were examined by X-ray photoelectron spectroscopy and scanning electron microscopy, and the structural color of fabric coated with Ag/TiO2 composite film was also analyzed. Findings Ag/TiO2 composite films deposited on textile substrate exhibited structural colors, and the bright colors could be adjusted and controlled by the thickness of TiO2 thin films in Ag/TiO2 composite films without any dyes or pigments. By comparing the results of theoretical calculation and experimental results, it was found that the creation of structural colors by the experiment was coincident to the colors by theoretical calculation according to the film interference principle. There was a linear relationship between the thickness of TiO2 film and the wavelength of the structural color. Originality/value Compared to traditional coloration by dyes or pigments, the coloration of textile by structural color from Ag/TiO2 composite films prepared by magnetron sputtering was very environmental friendly and simple without water consuming, time consuming and tedious work. Structural colors have great potential applications in textiles in place of traditional dyes and pigments. Furthermore, the textiles coated with Ag/TiO2 composite films have good electrical, optical and magnetic properties, and can be used in apparel, home furnishings and industrial fabrics.


Author(s):  
Jinbao Zhang ◽  
Yichuan Ding ◽  
Guochen Jiang ◽  
Austin C. Flick ◽  
Ziyi Pan ◽  
...  

Open-air, low temperature ultrasonic spray coating of SnO2/SnOx is demonstrated to fabricate large area PSCs and modules. The optimized SnO2/SnOx nanocomposite exhibits significantly enhanced hole-blocking, high efficiencies, as well as good shelf-life stability.


RSC Advances ◽  
2020 ◽  
Vol 10 (56) ◽  
pp. 33651-33661
Author(s):  
Sang Soo Kim ◽  
Jin Hyuck Heo ◽  
Sang Hyuk Im

A void-free metal halide perovskite (MHP) layer on a mesoscopic TiO2 (m-TiO2) film was formed via the wetting-induced infiltration of MHP solution in the m-TiO2 film via a green ultrasonic spray coating process using a non-hazardous solvent.


2018 ◽  
Vol 15 (2) ◽  
pp. 147-156
Author(s):  
Rebeka Rudolf ◽  
Urban Ferčec ◽  
Mohammed Shariq

Background: This review provides a closer look at recent work in the field of fireworks manufacture, which could see the replacement of micron-sized particles with their nano-scaled counterparts. Moreover, we also discuss micron-sized particles as well as nanoparticles (NPs) from K, Fe, Al, Ti, Ba, etc., that are produced in the atmosphere as a result of these fireworks. One of the possible technological substitutes for fireworks is presented in detail, i.e., the use of ultrasonic spray pyrolysis (USP) technology. Method: We searched Google, Web of Science and PubMed for a literature survey of fireworks and their products: firecrackers, micron-sized and nanoparticles. Moreover, we used some of our own knowledge and experimental data to strengthen the possibility of simulating the synthesis of firework products on the laboratory scale. Results: The use of nano reactants and oxidisers has seen a substantial increase in the sound efficiency and a decrease in the amount of chemicals used, making fireworks more eco-friendly. The application of Al- and Ti-based nano flash powder in the size range from 35 nm to 50 μm resulted in a significant improvement in the ignition properties of the fireworks. Under changing aerodynamic conditions, it is difficult to collect them as samples for real-time monitoring, needed for their characterization or the testing of their harmfulness under laboratory conditions. As a result, NPs below 100 nm in the surroundings could be easily inhaled into the lungs and cause more pulmonary and respiratory problems than micron-sized particles. USP produces nanoparticles in the laboratory that could replace the conventional micron-sized firecracker raw materials, or nanoparticles that are similar to those formed by fireworks. It will also help to identify the physiochemical properties of the airborne particulates in order to understand and evaluate their impact. </P><P> This review could be valuable for a controlled economic synthesis through USP, and in the use of nanopowders in pyrotechnology that could reduce pollution to a great extent, thus contributing to the growth and good practise of the fireworks industry. With respect to the USP synthesis, we have also discussed in detail the physical (size, shape) and chemical (composition) characteristics of Al2O3 and TiO2 NPs from different precursors and their temperature ranges. An in-depth explanation for a comparative analysis for the formation mechanism of nanoparticles through both fireworks and USP is presented in the final section. We can produce nanoparticles in the laboratory with ultrasonic spray pyrolysis that have similar properties to those produced from fireworks and can then be used for further testing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 956
Author(s):  
Philipp Taus ◽  
Adrian Prinz ◽  
Heinz D. Wanzenboeck ◽  
Patrick Schuller ◽  
Anton Tsenov ◽  
...  

Biomimetic structures such as structural colors demand a fabrication technology of complex three-dimensional nanostructures on large areas. Nanoimprint lithography (NIL) is capable of large area replication of three-dimensional structures, but the master stamp fabrication is often a bottleneck. We have demonstrated different approaches allowing for the generation of sophisticated undercut T-shaped masters for NIL replication. With a layer-stack of phase transition material (PTM) on poly-Si, we have demonstrated the successful fabrication of a single layer undercut T-shaped structure. With a multilayer-stack of silicon oxide on silicon, we have shown the successful fabrication of a multilayer undercut T-shaped structures. For patterning optical lithography, electron beam lithography and nanoimprint lithography have been compared and have yielded structures from 10 µm down to 300 nm. The multilayer undercut T-shaped structures closely resemble the geometry of the surface of a Morpho butterfly, and may be used in future to replicate structural colors on artificial surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inti Zumeta-Dubé ◽  
José Manuel García Rangel ◽  
Jorge Roque ◽  
Issis Claudette Romero-Ibarra ◽  
Mario Fidel García Sánchez

AbstractThe strong facet-dependent performance of glass-supported CeO2 thin films in different applications (catalysis, smart windows, etc.) has been the target of diverse fundamental and technological approaches. However, the design of accurate, cost-effective and scalable methods with the potential for large-area coverage that produce highly textured glass-supported CeO2 thin films remains a technological challenge. In the present work, it is demonstrated that under proper tuning conditions, the ultrasonic spray pyrolysis technique enables one to obtain glass-supported polycrystalline CeO2 films with noticeable texture along both the (100) and (111) directions, as well as with randomly oriented crystallites (no texture). The influence of flow rates, solution molarity, and substrate temperature on the texture and morphological characteristics, as well as optical absorption and Raman response of the deposited films, is evaluated. The obtained results are discussed on the basis of the combined dependence of the CeO2-exposed surfaces on the thermodynamic stability of the corresponding facets and the reaction kinetics, which modulate the crystallite growth direction.


2021 ◽  
Vol 13 (15) ◽  
pp. 8244
Author(s):  
Francesca Cirisano ◽  
Michele Ferrari

Highly hydrophobic and superhydrophobic materials obtained from recycled polymers represent an interesting challenge to recycle and reuse advanced performance materials after their first life. In this article, we present a simple and low-cost method to fabricate a superhydrophobic surface by employing polytetrafluoroethylene (PTFE) powder in polystyrene (PS) dispersion. With respect to the literature, the superhydrophobic surface (SHS) was prepared by utilizing a spray- coating technique at room temperature, a glass substrate without any further modification or thermal treatment, and which can be applied onto a large area and on to any type of material with some degree of fine control over the wettability properties. The prepared surface showed superhydrophobic behavior with a water contact angle (CA) of 170°; furthermore, the coating was characterized with different techniques, such as a 3D confocal profilometer, to measure the average roughness of the coating, and scanning electron microscopy (SEM) to characterize the surface morphology. In addition, the durability of SH coating was investigated by a long-water impact test (raining test), thermal treatment at high temperature, an abrasion test, and in acidic and alkaline environments. The present study may suggest an easy and scalable method to produce SHS PS/PTFE films that may find implementation in various fields.


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


Sign in / Sign up

Export Citation Format

Share Document