scholarly journals Encapsulation of Natural Bioactive Compounds by Electrospinning—Applications in Food Storage and Safety

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3771
Author(s):  
Bogdănel Silvestru Munteanu ◽  
Cornelia Vasile

Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro–sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.

2020 ◽  
Vol 26 (5) ◽  
pp. 519-541 ◽  
Author(s):  
Giovanna Ferrentino ◽  
Ksenia Morozova ◽  
Christine Horn ◽  
Matteo Scampicchio

Background: The use of essential oils is receiving increasing attention worldwide, as these oils are good sources of several bioactive compounds. Nowadays essential oils are preferred over synthetic preservatives thanks to their antioxidant and antimicrobial properties. Several studies highlight the beneficial effect of essential oils extracted from medicinal plants to cure human diseases such as hypertension, diabetes, or obesity. However, to preserve their bioactivity, the use of appropriate extraction technologies is required. Method: The present review aims to describe the studies published so far on the essential oils focusing on their sources and chemical composition, the technologies used for their recovery and their application as antioxidants in food products. Results: The review has been structured in three parts. In the first part, the main compounds present in essential oils extracted from medicinal plants have been listed and described. In the second part, the most important technologies used for extraction and distillation, have been presented. In detail, conventional methods have been described and compared with innovative and green technologies. Finally, in the last part, the studies related to the application of essential oils as antioxidants in food products have been reviewed and the main findings discussed in detail. Conclusions: In summary, an overview of the aforementioned subjects is presented by discussing the results of the most recent published studies.


Author(s):  
Muhammad Zeeshan Akram ◽  
Sema Yaman Fırıncıoğlu ◽  
Hassan Jalal ◽  
Sibel Canoğulları Doğan

Public concern on the excessive use of synthetic food additives has raised a great interest to use natural products due to their potential in food and pharmacological industries. Nowadays, chemical food additives are questioned due to their contribution to the health risks and environmental impacts. Among natural additives, essential oils (EOs) are extracted from aromatic compounds and responsible for their biological activities namely antimicrobial and antioxidant capacity. Incorporation of bio-active compounds particularly EOs directly in food or edible/biodegradable food packaging seems to enhance the shelf life and quality characteristics of processed food and protect the consumers against oxidative and bacterial deterioration effects. However, inclusion of EOs in films/coatings for food packaging may put some effects on various properties (optic, tensile and etc.), which can affect the consumer acceptability. Their addition in food can cause some allergic and hypersensitivity reactions to the individuals who use them often. This paper aims to review the latest findings on the use of EOs incorporated with edible/biodegradable films and coatings to enhance the shelf life and quality of the food. Further investigations about essential oils are expected to clarify their exact action and build up their standard use in food industry.


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


2011 ◽  
Vol 6 (9) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Ali Shafaghat

Essential oils obtained from flowers, leaves and stems of Origanum vulgare L. ssp. viride (Boiss.) Hayek., growing wild in Ardabil Province (northwest Iran), were analyzed by GC and GC/MS. β-Caryophyllene was the major constituent in all three oils (48.1%, 50.1% and 60.2%, respectively). Of the 19 components detected in the flower oil, comprising 96.3% of the total, the major components were 1,8-cineole (11.6%), α-pinene (6.9%), and γ,-cadinene (4.8%). 1-Octen-3-ol (23.8%), and 1,8-cineole (8.5%) predominated in the leaf oil. In the stem oil, other main constituents were bicyclogermacrene (9.8%), 1,8-cineole (6.4%), borneol (5.1%), and pinocarvone (4.4%). The essential oils were evaluated for their antibacterial activity against 10 selected microorganisms. The data obtained contribute to the future use of certain essential oils as natural preservatives for food products, due to their safety and positive effect on shelf life.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4198
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1267
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

The development of food-borne and infectious diseases has increased globally at an anomalous rate and is combined with emerging social and economic problems. This highlights the need for new and improved antibacterial agents with novel and different mechanisms of action at regular intervals. Some chemical or artificial food additives are considered harmful if they are used beyond their permissible levels. Today, consumers are demanding alternative, green, safer, and natural food additives to increase the shelf life of food. Essential oils (EOs) are concentrated liquid mixtures of volatile compounds with antioxidant and antibacterial properties that can be used as natural, eco-friendly, renewable, and cost-effective additives. The use of combinations of different EOs and their components is a promising strategy to increase the synergistic and additive effects of EOs in foods. In this article, we review the recent literature on EOs concerning the chemical constituents, extraction methods, antioxidant and antibacterial activities, and their mechanisms of action. Additionally, we discuss the synergistic interaction of different EOs and their components, challenges, and future directions of EOs as natural food preservatives, with special emphasis on shelf life extension and applications in the packaging of food products.


2021 ◽  
Vol 5 (1) ◽  
pp. 28
Author(s):  
Anton Soria-Lopez ◽  
Maria Carpena ◽  
Bernabe Nuñez-Estevez ◽  
Paula Garcia-Oliveira ◽  
Nicolas Collazo ◽  
...  

Active packaging has gained interest in recent years. As well as protecting food from the environment, it can incorporate agents with specific properties to extend the shelf life of the food. As a requirement, it is essential that the active agent has a greater affinity for the food than for the packaging material and, in this sense, essential oils (EOs) are potential candidates to be included in this new packaging system. The use of EOs can add to food matrix antimicrobial and antioxidant properties, reduce the permeability of the packaging to water vapor and extend the shelf life of food products. However, their use has been limited because they can produce a strong flavor by interacting with other compounds present in the food matrix and modify the organoleptic characteristics. Although the nanoencapsulation of EOs can provide chemical stability and minimize the impact of the Eos on the organoleptic properties by decreasing their volatilization, some physical modifications have still been observed, such as plasticizing effects and color variations. In this sense, the quality of the food products and consumer safety can be increased by using sensors. This technology indicates when food products are degrading and informs us if specific packaging conditions have changed. This work focuses on highlighting the use of biosensors as a new methodology to detect undesirable changes in the food matrix in a short period of time and the use of nanotechnology to include EOs in active films of natural origin.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 223-237
Author(s):  
M. Ramli ◽  
Nor-Khaizura M.A.R. ◽  
Nur Hanani Z.A. ◽  
Y. Rukayadi ◽  
N.I.P. Samsudin

Essential oils have a long history in their variety of applications. Although essential oils of various herbs and spices from other parts of the world have shown antimicrobial effects, those from Malaysian herbs remain underreported. Thus, can be further utilized in the search for novel bioactive compounds as natural antimicrobials to fulfil the consumers' demand for safer, healthier, and higher‐quality foods with longer shelf life. In the present work, the essential oils from ten herbs and spices namely betel, cinnamon, clove, coriander, galangal, ginger, lemongrass, lime, nutmeg, and turmeric, selected based on their abundance and economic importance, were analysed by gas chromatography and mass spectrometry. A total of 120 bioactive compounds were detected. The major (>10%) bioactive compounds were anethole, 26.25% (betel), cinnamaldehyde, 63.39% (cinnamon), eugenol, 87.16% (clove), linalool, 54.79% (coriander), propenoic acid, 29.56% (galangal), α-zingiberene, 26.32% (ginger), geranial, 42.61% (lemongrass), limonene, 39.84% (lime), β-phellandrene, 27.80% (nutmeg), and ar-turmerone, 41.81% (turmeric). All essential oils also yielded minor (<10%) bioactive compounds of different classes. Some of these major and minor bioactive compounds have been reported to exert fungicidal/fungistatic effects and could be an excellent candidate in the development of efficient fungal spoilage control strategies such as an active food packaging system.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2403 ◽  
Author(s):  
R. Syafiq ◽  
S. M. Sapuan ◽  
M. Y. M. Zuhri ◽  
R. A. Ilyas ◽  
A. Nazrin ◽  
...  

Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Shahla Ataei ◽  
Pedram Azari ◽  
Aziz Hassan ◽  
Belinda Pingguan-Murphy ◽  
Rosiyah Yahya ◽  
...  

The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.


Sign in / Sign up

Export Citation Format

Share Document