scholarly journals High-Performanced Hemicellulose Based Organic-Inorganic Films with Polyethyleneimine

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3777
Author(s):  
Han Wu ◽  
Jing Li ◽  
Yule Wu ◽  
Hui Gao ◽  
Ying Guan

For the high-value utilization of hemicellulose-based composite films, the poor film-forming and mechanical properties of hemicellulose-based composite films must be surmounted crucially. Based on this, hemicellulose-based organic-inorganic composite films with good mechanical properties were prepared from quaternized hemicelluloses (QH), bentonite, and polyethyleneimine (PEI). The QH/PEI/bentonite composite films were prepared by vacuum filtration, and the properties of the composite film were investigated. The results showed that the QH was inserted into bentonite nanosheets through hydrogen bonding and electrostatic interactions. PEI was cross-linked with hemicellulose by hydroxyl groups, electrostatically attracted by the bentonite flake layers. The mechanical properties of the composite films were significantly increased by the incorporation of PEI. When the PEI content was 20%, the tensile stress of the composite film was increased by 155.18%, and the maximum tensile stress was reached 80.52 MPa. The composite films had strong UV absorption ability with the transmittance was almost 0 in the UV region from 200 to 300 nm. The thermal property of composite film was also improved, and the residual mass increased by three times compared to QH. These results provide a theoretical basis for the use of hemicellulose-based composite films in packaging applications.

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 329
Author(s):  
Tan Yi ◽  
Minghui Qi ◽  
Qi Mo ◽  
Lijie Huang ◽  
Hanyu Zhao ◽  
...  

Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3041
Author(s):  
Jun Zhou ◽  
Junsheng Yu ◽  
Dongyu Bai ◽  
Huili Liu ◽  
Lu Li

In order to overcome the various defects caused by the limitations of solid metal as a shielding material, the development of electromagnetic shielding materials with flexibility and excellent mechanical properties is of great significance for the next generation of intelligent electronic devices. Here, the aramid nanofiber/Ti3C2Tx MXene (ANF/MXene) composite films with multilayer structure were successfully prepared through a simple alternate vacuum-assisted filtration (AVAF) process. With the intervention of the ANF layer, the multilayer-structure film exhibits excellent mechanical properties. The ANF2/MXene1 composite film exhibits a tensile strength of 177.7 MPa and a breaking strain of 12.6%. In addition, the ANF5/MXene4 composite film with a thickness of only 30 μm exhibits an electromagnetic interference (EMI) shielding efficiency of 37.5 dB and a high EMI-specific shielding effectiveness value accounting for thickness (SSE/t) of 4718 dB·cm2 g−1. Moreover, the composite film was excellent in heat-insulation performance and in avoiding light-to-heat conversion. No burning sensation was produced on the surface of the film with a thickness of only 100 μm at a high temperature of 130 °C. Furthermore, the surface of the film was only mild when touched under simulated sunlight. Therefore, our multilayer-structure film has potential significance in practical applications such as next-generation smart electronic equipment, communications, and military applications.


Author(s):  
Jie Liu ◽  
Yanchun Liu ◽  
Eleanor M. Brown ◽  
Zhengxin Ma ◽  
Cheng-Kung Liu

The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. 


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 651
Author(s):  
Xu Zheng ◽  
Qing Wang ◽  
Jinjin Luan ◽  
Yao Li ◽  
Ning Wang

Mechanical stability and repeatability are significant factors for the application of metal film flexible electronic devices. In this work, patterned metal/polymer composite films with good mechanical stability and repeatability were fabricated through nanoimprint technology. The mechanical properties characteristic of metal/polymer composite films were exhibited by resistance change (ΔR/R0) after cyclic tension and bending loading. It was found that the ΔR/R0 and error line of patterned metal/polymer composite film was far lower than the other control groups for repeated experiments, which indicates that patterned metal film has excellent mechanical properties and repeatability. The double cantilever beam method was employed to measure the interfacial adhesion properties of composite films. The average interfacial adhesion of patterned metal/polymer composite films is shown to be over 2.9 and 2.2 times higher than that of metal film deposited on bare polymer and metal nanowire-treated polymer substrates, respectively.


2020 ◽  
Vol 8 (22) ◽  
pp. 7476-7484 ◽  
Author(s):  
Xudong Zhou ◽  
Xiaoyun Liu ◽  
Zhongkai Cui ◽  
Jinlou Gu ◽  
Shaoliang Lin ◽  
...  

A new-type of hollow silica@ZIF-8 (HMS@ZIF-8) particle was successfully designed, fabricated and introduced into the fluorinated polybenzoxazole (6FPBO) matrix to prepare the HMS@ZIF-8/6FPBO composite film.


Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 388-393
Author(s):  
Yu-An Chien ◽  
Tso-Fu Mark Chang ◽  
Chun-Yi Chen ◽  
Daisuke Yamane ◽  
Hiroyuki Ito ◽  
...  

Strengthening of electrodeposited Au-based materials is achieved by co-electrodeposition with TiO2 nanoparticles dispersed in a sulfide-based gold electrolyte. TiO2 content in the composite film is adjusted by concentration of the TiO2 in the gold electrolyte. Effects of the TiO2 content on surface morphology, crystalline structure and microstructure of the composite film are investigated. Mechanical properties of the Au–TiO2 composite films are evaluated by micro-Vickers hardness and micro-compression tests. The hardness increases from 135 to 207 HV when the TiO2 content is increased from 0 to 2.72 wt%. Specimens used in the micro-compression test are micro-pillars fabricated from the composite film, and the yield strength reaches 0.84 GPa by incorporating 2.72 wt% TiO2 into the film.


2017 ◽  
Vol 30 (7) ◽  
pp. 847-855
Author(s):  
Qing Li ◽  
Jing Li ◽  
Shulai Zhang ◽  
Changfeng Yi ◽  
Zushun Xu

A series of CH3NH3PbI3/polyimide (PI) composite films were successfully fabricated using simple solution mixing. CH3NH3PbI3 particles were evenly dispersed into PI substrate, which could be seen from scanning electron microscopy images. Tensile test showed that the tensile strength of CH3NH3PbI3/PI composite film (5 wt%) was improved to the maximum (102.2 MPa), 127% higher than pure PI; and the elongation at break was remarkably stretched to 13% for CH3NH3PbI3/PI composite film (3 wt%), 171% greater than pure PI. Moreover, the thermal performance was enhanced to the optimum with the addition of 5 wt% CH3NH3PbI3. Ultraviolet–visible absorption curves revealed that the colors of CH3NH3PbI3/PI composite films were darkened and the red shift increased with the increasing content of CH3NH3PbI3. Furthermore, the CH3NH3PbI3/PI composite films exhibited increased dielectric constant with the maximum value of 13.8, compared with pure PI (3.6). These composite films may be promising to be used as dielectric materials in electronic industry.


2020 ◽  
Author(s):  
olarewaju oluba ◽  
Chibugo F. Obi ◽  
Oghenerobor B. Akpor ◽  
Samuel I. Ojeaburu ◽  
Feyikemi D. Adebiyi ◽  
...  

Abstract Background: The disposal of chicken feather through burning or burying is not environmentally compliant due to the accompanying release of greenhouse gas and underground water contamination. Thus, the transformation of this bio-waste into a bio-composite film is considered not only sustainable strategy for disposal of these solid wastes but also an attractive alternative to developing an efficient nanostructure biomaterial from renewable bio resource.Methods: In the present study keratin extracted from chicken feather waste in combination with ginger starch were fabricated into a bio-composite film. The fabricated bio-composite films were characterized, using different analytical techniques.Results: The physicochemical characteristics of ginger starch showed a moisture content of 33.8%, pH of 6.21, amylose and amylopectin contents of 39.1% and 60.9%, respectively. The hydration capacity of the starch was 132.2% while its gelatinization temperature was 65.7 oC. Physical attributes of the bio-composite film, such as surface smoothness and tensile stress increased significantly (p < 0.05) with increasing keratin content, while transparency, solubility significantly (p < 0.05) decreased with increasing keratin level. The various blends of the bio-composite films decayed by over 50% of the original mass after 12 days of complete burial in soil.Conclusion: Based on the results obtained in this study, the addition of keratin to starch bio-composite showed improvement in mechanical properties, such as tensile stress and surface smoothness. The bio-composite film exhibited appropriate stability in water, although future study showed be carried out to evaluate its thermal stability. Nonetheless, the fabricated keratin-starch bio-composite showed desirable characteristics that could be optimized for industrial applications.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 379
Author(s):  
Seonmin Lee ◽  
Jooheon Kim

Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.


Sign in / Sign up

Export Citation Format

Share Document