scholarly journals Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3920
Author(s):  
Pedro Mena-Giraldo ◽  
Jahir Orozco

Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo–medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.

Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
Cong Shen ◽  
Yan Qing Zhu ◽  
Zixiao Li ◽  
Jingling Li ◽  
Hong Tao ◽  
...  

InP quantum dots (QDs) are considered as the most promising alternative to Cd-based QDs with the lower toxicity and emission spectrum tunability ranging from visible to near-infrared region. Although high-quality...


2019 ◽  
Vol 87 (3) ◽  
pp. 20 ◽  
Author(s):  
Miléna Lengyel ◽  
Nikolett Kállai-Szabó ◽  
Vince Antal ◽  
András József Laki ◽  
István Antal

Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.


2003 ◽  
Vol 100 (23) ◽  
pp. 13549-13554 ◽  
Author(s):  
L. R. Hirsch ◽  
R. J. Stafford ◽  
J. A. Bankson ◽  
S. R. Sershen ◽  
B. Rivera ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
James Crum

Neuroimaging and neuropsychological methods have contributed much toward an understanding of the information processing systems of the human brain in the last few decades, but to what extent do cognitive neuroscientific findings represent and generalize to the inter- and intra-brain dynamics engaged in adapting to naturalistic situations? If it is not marked, and experimental designs lack ecological validity, then this stands to potentially impact the practical applications of a paradigm. In no other domain is this more important to acknowledge than in human clinical neuroimaging research, wherein reduced ecological validity could mean a loss in clinical utility. One way to improve the generalizability and representativeness of findings is to adopt a more “real-world” approach to the development and selection of experimental designs and neuroimaging techniques to investigate the clinically-relevant phenomena of interest. For example, some relatively recent developments to neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) make it possible to create experimental designs using naturalistic tasks that would otherwise not be possible within the confines of a conventional laboratory. Mental health, cognitive interventions, and the present challenges to investigating the brain during treatment are discussed, as well as how the ecological use of fNIRS might be helpful in bridging the explanatory gaps to understanding the cultivation of mental health.


2015 ◽  
Vol 185 ◽  
pp. 361-379 ◽  
Author(s):  
Ana Marta Diniz ◽  
Nuno Basílio ◽  
Hugo Cruz ◽  
Fernando Pina ◽  
A. Jorge Parola

A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 105–108 M−1 and 103–104 M−1, respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.


2017 ◽  
Vol 8 (3) ◽  
pp. 1815-1821 ◽  
Author(s):  
Yuqiong Dai ◽  
Hao Sun ◽  
Sunirmal Pal ◽  
Yunlu Zhang ◽  
Sangwoo Park ◽  
...  

Responsive systems sensitive to near-infrared (NIR) light are promising for triggered release due to efficient deep tissue penetration of NIR irradiation relative to higher energy sources (e.g., UV), allowing for spatiotemporal control over triggering events with minimal potential for tissue damage.


Sign in / Sign up

Export Citation Format

Share Document