scholarly journals Carboxyl-Rich Carbon Dots as Highly Selective and Sensitive Fluorescent Sensor for Detection of Fe3+ in Water and Lactoferrin

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4317
Author(s):  
Xinxin Wang ◽  
Yanan Zhao ◽  
Ting Wang ◽  
Yan Liang ◽  
Xiangzhong Zhao ◽  
...  

As lactoferrin (LF) plays an essential role in physiological processes, the detection of LF has attracted increasing attention in the field of disease diagnosis. However, most current methods require expensive equipment, laborious pretreatment, and long processing time. In this work, carboxyl-rich carbon dots (COOH-CDs) were facilely prepared through a one-step, low-cost hydrothermal process with tartaric acid as the precursor. The COOH-CDs had abundant carboxyl on the surface and showed strong blue emission. Moreover, COOH-CDs were used as a fluorescent sensor toward Fe3+ and showed high selectivity for Fe3+ with the limit of detection (LoD) of 3.18 nM. Density functional theory (DFT) calculations were performed to reveal the mechanism of excellent performance for Fe3+ detection. Meanwhile, COOH-CDs showed no obvious effect on lactobacillus plantarum growth, which means that COOH-CDs have good biocompatibility. Due to the nontoxicity and excellent detection performance for Fe3+, COOH-CDs were employed as a fluorescent sensor toward LF and showed satisfying performance with an LoD of 0.776 µg/mL, which was better than those of the other methods.

Author(s):  
Ali Ghafarloo ◽  
Reza Sabzi ◽  
Naser Samadi ◽  
Hamed Hamishehkar

Synthesis of carbon dots (CDs) from natural resources not only enables green synthesis and production of environmentally friendly materials, but also provides a cost-effective probe as a fluorescence nanosensor. The proposed sensor introduces a unique one-pot hydrothermal CDs synthesis from alfalfa leaves, which is promising for sensing hydrochlorothiazide (HCTZ) via inner filter effect (IFE) and resonance Rayleigh scattering (RRS). The as-prepared CDs had wide emission spectra, excitation-dependent emission, high solubility, high stability, and visible fluorescence light with a quantum yield of up to 11%. The absorption of HCTZ overlapped with the excitation spectra of CDs. Therefore, CDs represented excellent quenching due to IFE when HCTZ was gradually added. Furthermore, this fluorescent sensor was successfully used to quantify HCTZ in the linear ranges (0.17-2.50 μg mL-1) with the limit of detection of 0.11 μg mL-1. The sensing system was simple as no surface functionalization was required for CDs, leading to less laborious steps and more cost-effective synthesis. The reaction time was short, i.e., less than 2 min, indicating a simple approach for rapid analysis of HCTZ. By optimizing conditions, successful measurements were carried out on pharmaceutical tablets.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2316
Author(s):  
Chao Kang ◽  
Ying Huang ◽  
Hui Yang ◽  
Xiu Fang Yan ◽  
Zeng Ping Chen

The fluorescent carbon dot is a novel type of carbon nanomaterial. In comparison with semiconductor quantum dots and fluorescence organic agents, it possesses significant advantages such as excellent photostability and biocompatibility, low cytotoxicity and easy surface functionalization, which endow it a wide application prospect in fields of bioimaging, chemical sensing, environmental monitoring, disease diagnosis and photocatalysis as well. Biomass waste is a good choice for the production of carbon dots owing to its abundance, wide availability, eco-friendly nature and a source of low cost renewable raw materials such as cellulose, hemicellulose, lignin, carbohydrates and proteins, etc. This paper reviews the main sources of biomass waste, the feasibility and superiority of adopting biomass waste as a carbon source for the synthesis of carbon dots, the synthetic approaches of carbon dots from biomass waste and their applications. The advantages and deficiencies of carbon dots from biomass waste and the major influencing factors on their photoluminescence characteristics are summarized and discussed. The challenges and perspectives in the synthesis of carbon dots from biomass wastes are also briefly outlined.


2020 ◽  
Vol 12 (33) ◽  
pp. 4130-4138
Author(s):  
Jingzhou Hou ◽  
Xianfeng Wang ◽  
Shiyu Lan ◽  
Chao Zhang ◽  
Changjun Hou ◽  
...  

Carbon dots (CDs) having low cost and low toxicity and synthesized via a green route were applied to establish a fluorescent nanoprobe for the measurement of glyphosate.


NANO ◽  
2017 ◽  
Vol 12 (02) ◽  
pp. 1750024 ◽  
Author(s):  
Xiqing Liu ◽  
Xiao Wei ◽  
Yeqing Xu ◽  
Hongji Li ◽  
Kai Lu ◽  
...  

In this paper, a novel fluorescent nanoswitch based on carbon dots (CDs) was developed for the sensitive and selective determination of Hg[Formula: see text] and I[Formula: see text]. The CDs were obtained by simple hydrothermal process and had a strong fluorescence emission at 440[Formula: see text]nm. The fluorescence of the CDs can be selectively quenched by Hg[Formula: see text] ion, and then the I[Formula: see text] was added into the system, which can interact with Hg[Formula: see text] and recover fluorescence of the CDs. Under optimal conditions, the quenching fluorescence intensity on addition of Hg[Formula: see text] has obtained a satisfactory linear relationship covering the linear range of 0–50[Formula: see text][Formula: see text]M with the linear relationship ([Formula: see text]), and the limit of detection is 0.047[Formula: see text][Formula: see text]M. The additions of I[Formula: see text] could lead to the fluorescence intensity of the solution of CDs and Hg[Formula: see text] (50[Formula: see text][Formula: see text]M) recover rapidly, which is linearly related ([Formula: see text]) to the concentration of I[Formula: see text] in the range from 0 to 70[Formula: see text][Formula: see text]M, the detection limit for I[Formula: see text] was calculated to be 0.084[Formula: see text][Formula: see text]M. Moreover, the developed method to detect Hg[Formula: see text] and I[Formula: see text] was evaluated in real examples, and the fluorescence switching can sensitively and selectively detect Hg[Formula: see text] and I[Formula: see text] over some potentially interfering ions, the recoveries were up to 97.8–107.0% and 96.7–106.6%, respectively.


Chemosensors ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 61
Author(s):  
Fajar Amelia Rachmawati Putri ◽  
Mudasir Mudasir ◽  
Kinichi Morita ◽  
Suherman Suherman

Fluorescent amikacin modified nitrogen, sulfur co-doped carbon dots (amikacin modified N,S-CDs) were synthesized by a facile and low-cost one-step microwave-assisted specifically for selective detection of Gram-negative bacteria Escherichia coli (E. coli). Amikacin is a semi-synthetic amino glycoside antibiotic and it was employed in this study to increase the fluorescence response of N,S-CDs by providing binding ligand towards E. coli. The effect of thiourea content as the source of nitrogen and sulfur dopants was investigated prior to the preparation of amikacin modified N,S-CDs. The formation of amikacin modified N,S-CDs were characterized by using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM), UV-Vis spectrophotometer, and spectrofluorometer. Amikacin modified N,S-CDs was identified to be successfully synthesized from the wavenumber shift of the C=O stretching mode. Amikacin modified N,S-CDs were amorphous with an average size of 7 nm. Fluorescence spectra showed that the highest intensity was obtained at thiourea content of 50% and amikacin mass of 25 mg. By comparing fluorescence responses of all the investigated amikacin modified N,S-CDs, the limit of detection (LOD) was attained by 25 mg amikacin modified N,S-CDs at 1.526 cfu mL−1.


2022 ◽  
Author(s):  
Puthiyavalappil Rasin ◽  
Merlin Mary Mathew ◽  
Vipin Manakkadan ◽  
Vishnunarayanan Namboothiri Vadakkedathu Palakkeezhillam ◽  
Sreekanth Anandaram

Abstract In this work, we introduce a highly selective and sensitive fluorescent sensor based on pyrene derivative for Fe(III) ion sensing in DMSO/water media. 2-(pyrene-2-yl)-1-(pyrene-2-ylmethyl)-1H-benzo[d]imidazole (PEBD) receptor was synthesized via simple condensation reaction and confirmed by spectroscopic techniques. The receptor exhibits fluorescence quenching in the presence of Fe(III) ions at 440 nm. ESI-MS and Job’s method were used to confirm the 1:1 molar binding ratio of the receptor PEBD to Fe(III) ions. Using the Benesi-Hildebrand equation the binding constant value was determined as 8.485×103 M-1. Furthermore, the limit of detection (LOD, 3σ/K) value was found to be 1.81µM in DMSO/water (95/5, v/v) media. According to the Environmental Protection Agency (EPA) of the United States, it is lower than the acceptable value of Fe3+ in drinking water (0.3 mg/L). The presence of 14 other metal ions such Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Pb2+, K+, Ni2+, Mg2+, Cd2+, Ca2+, Mn2+, Al3+, and Zn2+ did not interfere with the detection of Fe(III) ions. Computational studies of the receptor PEBD were carried out with density functional theory (DFT) using B3LYP/ 6-311G (d, p), LANL2DZ level of theory. Finally, molecular docking studies have been performed to investigate the Cytochrome P450 1A1(CYP1A1) protein inhibitory action of the receptor PEBD.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1981
Author(s):  
Roberto Sotolongo-García ◽  
Eustolia Rodríguez-Velázquez ◽  
Manuel Alatorre-Meda ◽  
Mercedes T. Oropeza-Guzmán ◽  
Antonio Tirado-Guízar ◽  
...  

In this work, the Förster resonance energy transfer (FRET) between carbon dots (CDs) as energy donors and riboflavin (RF) as an energy acceptor was optimized and the main parameters that characterize the FRET process were determined. The results were successfully applied in the development of an ultrasensitive ratiometric fluorescent sensor for the selective and sensitive determination of RF in different beverages. Water-soluble CDs with a high quantum yield (54%) were synthesized by a facile and direct microwave-assisted technique. The CDs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Zeta potential, and UV-visible and molecular fluorescence spectroscopy. The study of the FRET process at two donor concentrations showed that the energy transfer efficiency decreases as the donor concentration increases, confirming its dependence on the acceptor:donor ratio in nanoparticle-based systems. The results show the importance of optimizing the FRET process conditions to improve the corresponding output signal. The variation in the ratiometric signal with the concentration of RF showed linearity in a concentration range of 0 to 11 µM with R2 = 0.9973 and a detection limit of 0.025 µM. The developed nanosensor showed good selectivity over other possible types of interference. The sensor was then applied for the determination of RF in beverage samples using the standard addition method with recoveries between 96% and 106%. Preliminary cytocompatibility tests carried out with breast cancer cells (MDA-MB-231) revealed the nanosensor to be cytocompatible in its working concentration regime, even after long incubation times with cells. Altogether, the developed RF determination method was found to be fast, low-cost, highly sensitive, and selective and can be extended to other samples of interest in the biological and food sectors. Moreover, thanks to its long-lasting cytocompatibility, the developed platform can also be envisaged for other applications of biological interest, such as intracellular sensing and staining for live cell microscopy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Siti Raudhatul Kamali ◽  
Chang-Nan Chen ◽  
Dinesh Chandra Agrawal ◽  
Tai-Huei Wei

AbstractThis study synthesized a facile and high sensitive fluorescent probe based on sulfur-doped carbon dots (S-CDs) using a one-step microwave irradiation method. The probe exhibited a strong blue emission and a high quantum yield (QY) of 36.40%. In the detection, the presence of trivalent chromium (Cr(III)) strongly quenched the PL intensity of S-CDs by the inner filter effect (IFE) quenching mechanism of Cr(III) on the S-CDs. The S-CDs exhibited good sensitivity to turn-off Cr(III) detection with a linear range concentration of 0–45 μM and a detection limit of 0.17 μM. Furthermore, the proposed method has been successfully applied for Cr(III) detection in natural water samples with the 93.68–106.20% recoveries.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sathishkumar Munusamy ◽  
Sathish Sawminathan ◽  
Thanigaivelan Arumugham ◽  
Maura Casales Díaz ◽  
Srinivas Godavarthi ◽  
...  

This work reports nitrogen-doped carbon dots (NCDs) as a selective sensing probe to detect Fe3+ in water samples. NCD probes were synthesized via solvothermal method using nitrogen-rich melamine and triethanolamine as precursors. Properties of the resulting NCDs were studied using different characterization techniques, through which N-doping was confirmed. The quantum yield of obtained NCDs was measured to be 21%. When excited at 370 nm, the excellent blue emission property makes this probe adoptable for selectively sensing Fe3+ in practical water samples. The limit of detection (LOD) was identified as 216 nM with a good linear range between the concentrations of 0.2-2 μM. The obtained LOD is far less than the World Health Organization (WHO) permissible limits of Fe3+ in water. Interference studies reveal that the presence of other competing ions did not alter the sensing of Fe3+, even at the presence of 10 equivalents which indicates the high selectivity of NCDs towards Fe3+. The reversibility studies showed that adding a cheap and readily available EDTA ligand to the NCD results in fluorescence regeneration, leading to exceptional reusability for the detection of Fe3+. So, the synthesized NCDs can be used as a suitable probe for the selective determination of Fe3+ in real water samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Peng Li ◽  
Yongcheng Hu

As common bisphosphonates drugs, pamidronate disodium and zoledronic acid have been widely investigated for bone metastases. In this paper, a new “turn-off” model based on carbon dots (CDs) from black tea was established to analyze the two kinds of bisphosphonate drugs, pamidronate disodium and zoledronic acid. Through the new sensor, both of drugs can be quantitative, respectively, with the limit of detection of 5 × 10−9 mol·L−1 and 6 × 10−9 mol·L−1. In addition, the fluorescence of newly prepared CDs can be quenched by two drugs with various degrees via photoinduced electron transfer, which can be perfectly used to distinguish them. Most importantly, this turn-off method has been employed to analyze the two drugs under the influence of foreign interference factors. This method provides a new view and guidance for the rapid analysis and recognition of drugs for bone metastases in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document