scholarly journals Applying Box–Behnken Design for Formulation and Optimization of PLGA-Coffee Nanoparticles and Detecting Enhanced Antioxidant and Anticancer Activities

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Nouran S. Sharaf ◽  
Amro Shetta ◽  
Jailan E. Elhalawani ◽  
Wael Mamdouh

In an attempt to prove biological activity enhancement upon particle size reduction to the nanoscale, coffee (Cf) was chosen to be formulated into poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) using the single emulsion-solvent evaporation (SE-SE) method via Box–Behnken Design (BBD) to study the impact of certain process and formulation parameters on the particle size and size homogeneity, surface stability and encapsulation efficiency (EE%). The coffee-loaded PLGA (PLGA-Cf) NPs were characterized by different methods to aid in selecting the optimum formulation conditions. The desirable physicochemical characteristics involved small particle sizes with an average of 318.60 ± 5.65 nm, uniformly distributed within a narrow range (PDI of 0.074 ± 0.015), with considerable stability (Zeta Potential of −20.50 ± 0.52 mV) and the highest EE% (85.92 ± 4.01%). The antioxidant and anticancer activities of plain PLGA NPs, pure Cf and the optimum PLGA-Cf NPs, were evaluated using 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. As a result of nano-encapsulation, antioxidant activity was enhanced by 26.5%. Encapsulated Cf showed higher anticancer potency than pure Cf against different cancerous cell lines with an increase of 86.78%, 78.17%, 85.84% and 84.84% against MCF-7, A-549, HeLa and HepG-2, respectively. The in vitro release followed the Weibull release model with slow and biphasic release profile in both tested pH media, 7.4 and 5.5.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saeed Ebrahimi ◽  
Reza Mahjub ◽  
Rasool Haddadi ◽  
Seyed Yaser Vafaei

Cationic nanocapsules represent a promising approach for topical delivery purposes. We elaborated on a novel formulation based on the cationic nanocapsules to enhance the pharmacodynamic efficacy, user compliance, and photostability of tretinoin (TTN). To achieve this goal, TTN nanocapsules were prepared by the nanoprecipitation method. In order to statistically optimize formulation variables, a Box-Behnken design, using Design-Expert software, was employed. Three independent variables were evaluated: total weight of the cationic acrylic polymer ( X 1 ), oil volume ( X 2 ), and TTN amount ( X 3 ). The particle size and encapsulation efficiency percent (EE%) were selected as dependent variables. The optimal formulation demonstrated spherical morphology under scanning electron microscopy (SEM), optimum particle size of 116.3 nm, and high EE% of 83.2%. TTN-loaded nanocapsules improved photostability compared to its methanolic solution. The in vitro release study data showed that tretinoin was released in a sustained manner compared to the free drug. The ex vivo skin permeation study demonstrated that greater drug deposition into the epidermal region rather than the deep skin was observed with a gel containing TTN-loaded nanocapsules than that of drug solution, respectively. The skin irritation test revealed that the nanoencapsulation of the drug decreased its irritancy compared to the free drug. These results revealed the promising potential of cationic nanocapsules for topical delivery of tretinoin


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 397
Author(s):  
Margarida Miranda ◽  
Catarina Cardoso ◽  
Carla Vitorino

Considering the recent regulatory requirements, the overall importance of in vitro release testing (IVRT) methods regarding topical product development is undeniable, especially when addressing particulate systems. For each IVRT study, several hundreds of samples are generated. Therefore, developing rapid reversed-phase high-performance liquid chromatography (RP-HPLC) methods, able to provide a real-time drug analysis of IVRT samples, is a priority. In this study, eight topical complex drug products exhibiting distinct physicochemical profiles were considered. RP-HPLC methods were developed and fully validated. Chromatographic separations were achieved on a XBridgeTM C18 (5 µm particle size, 150 mm × 2.1 mm), or alternatively on a LiChrospher® 100 RP-18 (5 µm particle size, 125 mm × 4.6 mm) at 30 °C, under isocratic conditions using UV detection at specific wavelengths. According to the physicochemical characteristics of each drug, different mobile phases were selected. Irrespective of the drug (hydrocortisone, etofenamate, bifonazole, clotrimazole, acyclovir, tioconazole, clobetasol, and diclofenac) and formulation, retention time values did not exceed 6.5 min. All methods were linear, specific, precise, and accurate at the intraday and interday levels, robust, and stable. These were successfully applied to establish product-specific IVRT profiles, thus providing a key database useful for topical pharmaceutical manufacturers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiao Liang ◽  
Guobing Xu ◽  
Zhenbao Li ◽  
Zihua Xuan ◽  
Hongsu Zhao ◽  
...  

Panax notoginseng (PN) has become the most widely used dietary supplement and herbal in Asian countries. The effect of micronization on PN is not entirely clear. The aim of this study was to investigate the effects of particle size of Panax notoginseng powder (PNP) and the potential to improve the bioavailability. The results showed that particle size reduction significantly changed the Panax notoginseng saponins (PNS) in vitro dissolution and in vivo pharmacokinetics. The size of the Panax notoginseng powder (PNP) ranges from 60 to 214 μm. The surface morphology and thermal properties of PNP were extensively characterized, and these changes in physicochemical properties of PNP provide a better understanding of the in vitro and in vivo release behaviors of PNS. The in vitro studies demonstrated that the dissolution of PNS and particle size were nonlinear (dose- and size-dependent). The pharmacokinetics parameters of PNP in rats were determined by UHPLC-MS/MS. Powder 4 (90.38 ± 8.28 μm) showed significantly higher AUC0-T values in plasma P < 0.05 . In addition, we also investigated the influence of the hydrothermal treatment of PNP. The results showed that the PNS in vitro release and in vivo bioavailability of PNP pretreatment at 40°C were the highest. This suggests that PNP with a particle size of around 90 μm and heat pretreatment at 40°C would be beneficial. These results provided an experimental basis, and it was beneficial to choose an appropriate particle size and hydrothermal temperature when PNP was used in clinical treatment.


2019 ◽  
Author(s):  
Sushil Reddy ◽  
David Gupta

AbstractThe preparation process of artesunate-loaded polyethylene glycol monomethyl ether-polylactic acid-glycolic acid affinity block copolymer (mPEG-PLGA) nanoparticles and its growth inhibition on human leukemia K562 cells were investigated. METHODS: Artesunate mPEG-PLGA nanoparticles (Art-Nps) were prepared by modified self-emulsification method. The morphology of nanoparticles was characterized by scanning electron microscopy. The particle size distribution and zeta potential were measured by laser scattering particle size analyzer. The drug loading, encapsulation efficiency and in vitro release of Art-Nps were determined by chromatography. The proliferation and apoptosis of human leukemia K562 cells were observed by MTT assay and Hoechst staining. RESULTS: Art-Nps is a spherical solid particle with smooth surface, average particle size (156.70+/-1.01) nm, zeta potential of -(26.23+/-1.86) mV, average drug loading (14.51+/-0.20)%, average package. The sealing rate was (86.51+/-0.50)%, and the in vitro release law accorded with the Higuchi equation: Q=4.11t 1/2+27.05, R2=0.98. MTT assay showed that Art-Nps inhibited the proliferation of K562 cells in a time-dose-dependent manner, and the inhibition rate exceeded the artesunate-treated group after 72h, and sustained release. The number of cells was observed after cultured with different concentrations of Art-Nps for 48h. Significantly reduced, cell size is different, irregular shape, high magnification can be seen in the nucleus pyknosis, agglutination, and apoptotic bodies, and increased apoptotic bodies with increasing concentration.


Author(s):  
Archana Nerella ◽  
Basava Dontamsetti ◽  
Aruna Mantena

The objective of the current investigation was to prepare solid lipid nanoparticles (SLNs) from different lipids and to study the effect of lipids on physicochemical characteristics of letrozole loaded SLN. In order to prepare small, stable, uniform and high Letrozole loaded SLNs, many factors such as lipid and stabilizer concentration and preparation parameters can be considered. Out of these, we have selected solid lipid as lipid matrix to investigate an effect on SLNs. SLNs were prepared using different lipids by modified hot sonication method. The effect of different lipids and stabilizers on physicochemical characteristics of Letrozole loaded SLNs were investigated. Letrozole loaded SLNs showed different physicochemical properties and release profiles according to used solid lipid. In case of particle size, SLN1 showed biggest particle size (532.5 ± 26.4nm) and highest encapsulation efficiency (81.37 ± 6.72%) and, SLN4 showed highest cumulative drug percentage (89.4 ± 1.8%, 24 h) release. These results suggest that lipids type affect physicochemical properties and release profile of SLN. The choice of lipid and stabilizer played important role on the physicochemical characteristics and in vitro release of Letrozole loaded SLNs.


Author(s):  
S. Parimala Krishnan ◽  
Cinnayyagari Mahesh Reddy ◽  
Challa Balashekar Reddy

Aims: The aim of present study was to develop a stomach specific formulation of Imatinibmesylate to increase the fraction of drug absorbed in stomach. Study Design: Development and Optimization of Microspheres for site specific delivery.. Place and Duration of Study: The study was carried out in Department of Pharmacy, Annamalai University, between October 2020 and July 2021. Methodology: Ionotropic gelation method with Sodium alginate and Chitosan were used to formulate the mucoadhesive microspheres with calcium chloride. The formulation was optimized using Box – Behnken design to study the effect of independent variables, Amount of Sodium Alginate (X1), Amount of Chitosan (X2) and concentration of Calcium Chloride (X3) on dependent variables Particle Size (Y1), Entrapment Efficiency (Y2) and In-vitro drug release (Y3). Results: Particle size of prepared microspheres varied from 458.25 to 810.75 μm, entrapment efficiency from 64.87 to 82.63% and in-vitro release from 69.22 to 83.50%. The optimized formulation was found using point prediction, and formulation showed optimum results. The drug release was controlled for more than 12 h. Conclusion: Stomach specific formulation of Imatinibmesylate was successfully optimized by a three-factor, three level Box – Behnken design.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Sign in / Sign up

Export Citation Format

Share Document