scholarly journals Joining of Al2O3 Rods Using Microwaves and Employing Sic Particles as Adhesive

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 750
Author(s):  
Kimura ◽  
Fujii ◽  
Kashimura ◽  
Nakao

The joining of Al2O3 rods using SiC particles in a microwave field was examined. SiC with high microwave absorption characteristics is coated on the fracture surface of Al2O3 rods. Then, microwave irradiation is performed using a 2.45 GHz single-mode cavity and the Al2O3 rods are rapidly joined. Energy dispersive X-ray spectroscopy reveals that the substance generated on the joining surface comprises Al and O. It is believed that the SiC interacts with the microwave to generate microwave plasma and that the plasma melts the Al2O3 rods. Thus, the matrix melts and the fracture surfaces are joined.

2008 ◽  
Vol 569 ◽  
pp. 45-48
Author(s):  
Hai Yun Jin ◽  
Guan Jun Qiao ◽  
Zong Ren Peng ◽  
Ji Qiang Gao

SiC particles coated with nano-BN were synthesized and the machinable SiC/BN ceramic nano-composites were fabricated by Plasma Active Sintering (PAS) in N2 atmosphere. The existing and distribution of h-BN phase were revealed by X-ray diffraction (XRD), and SEM. For the existing of weak interface between h-BN and SiC grains, the machinability of both SiC/BN micro-composites and nano-composites were improved obviously. Because the nano-sized h-BN crystals were homogeneously dispersed around the SiC grains of the matrix, the fracture strength of the nano-composites was better than the SiC/h-BN micro-composite.


2008 ◽  
Vol 12 (3) ◽  
pp. 119-122 ◽  
Author(s):  
D. C. Dube ◽  
M. Fu ◽  
D. Agrawal ◽  
R. Roy ◽  
A. Santra

2010 ◽  
Vol 638-642 ◽  
pp. 2080-2084
Author(s):  
Yoshihiko Kunieda ◽  
Hiroshi Shimofuruya ◽  
Tomoyuki Tanigawa ◽  
Yasuyuki Ito

The use of microwave heating has now been applied to a wide variety of industrial fields. Especially, the use of microwave energy for the firing process of the advanced ceramics has been reportedly found to offer significant advantages compared to the conventional thermal heating. Generally, in the volume production, we use the suscepor, which is the pyrogenetic substance to be heated the specimens externally and to play a very important role in firing ceramics. Recently, we found out that the powdered metal silicon compact is one of the good candidates as susceptor materials. However, its microwave heating mechanism has not been made clear, yet. Then, in this report, we carried out the fundamental studies about the heating behaviors of the powdered metal silicon compact mixed with aluminum oxide powder under the microwave irradiation at a frequency of 2.45GHz in a symmetrical single mode cavity TE01 and the analysis of products after heating by the X-ray diffraction method. From experimental results, it was found out that the attained temperature of the compact specimen under microwave irradiation was higher with increase of voltage along the voltage distribution in the single mode cavity. And it was also found out that the temperature was different with how to set up the compact specimen in the single mode cavity.


2011 ◽  
Vol 413 ◽  
pp. 207-212
Author(s):  
Run Lan Zhang ◽  
Xiang Rong Liu ◽  
Tan Wei Zhou ◽  
Jian Li Yang

SiCp/Mg-Al composites with 5μm 2wt.% SiC particles as reinforcement were prepared under the protection of inorganic flux. The microstructures, textures and components of the composites were investigated using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and backscattered electron imaging (BSE). The results indicate that SiC particles are mainly distributed along grain boundaries, retarding grain growth and conducing to the refinement of the matrix. Interfacial reaction can occur between SiCp and Mg but not between SiCp and Al. There are α-Mg and β-Mg17Al12 phases, γ-MgAl phase, α-Al and β-Al3Mg2 phases in SiCp/Mg-Al composites with the Mg/Al ratio of 4/1, 1/1, 1/4 respectively.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
J.Y. Laval

The exsolution of magnetite from a substituted Yttrium Iron Garnet, containing an iron excess may lead to a transitional event. This event is characterized hy the formation of a transitional zone at the center of which the magnetite nucleates (Fig.1). Since there is a contrast between the matrix and these zones and since selected area diffraction does not show any difference between those zones and the matrix in the reciprocal lattice, it is of interest to analyze the structure of the transitional zones.By using simultaneously different techniques in electron microscopy, (oscillating crystal method microdiffraction and X-ray microanalysis)one may resolve the ionic process corresponding to the transitional event and image this event subsequently by high resolution technique.


Author(s):  
C.M. Sung ◽  
K.J. Ostreicher ◽  
M.L. Huckabee ◽  
S.T. Buljan

A series of binary oxides and SiC whisker reinforced composites both having a matrix composed of an α-(Al, R)2O3 solid solution (R: rare earth) have been studied by analytical electron microscopy (AEM). The mechanical properties of the composites as well as crystal structure, composition, and defects of both second phases and the matrix were investigated. The formation of various second phases, e.g. garnet, β-Alumina, or perovskite structures in the binary Al2O3-R2O3 and the ternary Al2O3-R2O3-SiC(w) systems are discussed.Sections of the materials having thicknesses of 100 μm - 300 μm were first diamond core drilled. The discs were then polished and dimpled. The final step was ion milling with Ar+ until breakthrough occurred. Samples prepared in this manner were then analyzed using the Philips EM400T AEM. The low-Z energy dispersive X-ray spectroscopy (EDXS) data were obtained and correlated with convergent beam electron diffraction (CBED) patterns to identify phase compositions and structures. The following EDXS parameters were maintained in the analyzed areas: accelerating voltage of 120 keV, sample tilt of 12° and 20% dead time.


Author(s):  
Richard B. Mott ◽  
John J. Friel ◽  
Charles G. Waldman

X-rays are emitted from a relatively large volume in bulk samples, limiting the smallest features which are visible in X-ray maps. Beam spreading also hampers attempts to make geometric measurements of features based on their boundaries in X-ray maps. This has prompted recent interest in using low voltages, and consequently mapping L or M lines, in order to minimize the blurring of the maps.An alternative strategy draws on the extensive work in image restoration (deblurring) developed in space science and astronomy since the 1960s. A recent example is the restoration of images from the Hubble Space Telescope prior to its new optics. Extensive literature exists on the theory of image restoration. The simplest case and its correspondence with X-ray mapping parameters is shown in Figures 1 and 2.Using pixels much smaller than the X-ray volume, a small object of differing composition from the matrix generates a broad, low response. This shape corresponds to the point spread function (PSF). The observed X-ray map can be modeled as an “ideal” map, with an X-ray volume of zero, convolved with the PSF. Figure 2a shows the 1-dimensional case of a line profile across a thin layer. Figure 2b shows an idealized noise-free profile which is then convolved with the PSF to give the blurred profile of Figure 2c.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 877
Author(s):  
Chieh-Kai Chan ◽  
Chien-Yu Lai ◽  
Cheng-Chung Wang

Herein, we report a facile synthetic methodology for the preparation of 2,3-dialkylquinolines from anilines and propionaldehydes. This cyclization involved environmentally friendly Nafion® NR50 as an acidic catalyst with microwave irradiation as the heating source. A series of substituted 2-ethyl-3-methylquinolines were prepared from various anilines and propionaldehyde derivatives through this protocol with good to excellent yields. Some new chemical structures were confirmed by X-ray single-crystal diffraction analysis and the related data were provided. The plausible reaction mechanism studies are also discussed.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Valérie Laperche ◽  
Bruno Lemière

Portable X-ray fluorescence spectroscopy is now widely used in almost any field of geoscience. Handheld XRF analysers are easy to use, and results are available in almost real time anywhere. However, the results do not always match laboratory analyses, and this may deter users. Rather than analytical issues, the bias often results from sample preparation differences. Instrument setup and analysis conditions need to be fully understood to avoid reporting erroneous results. The technique’s limitations must be kept in mind. We describe a number of issues and potential pitfalls observed from our experience and described in the literature. This includes the analytical mode and parameters; protective films; sample geometry and density, especially for light elements; analytical interferences between elements; physical effects of the matrix and sample condition, and more. Nevertheless, portable X-ray fluorescence spectroscopy (pXRF) results gathered with sufficient care by experienced users are both precise and reliable, if not fully accurate, and they can constitute robust data sets. Rather than being a substitute for laboratory analyses, pXRF measurements are a valuable complement to those. pXRF improves the quality and relevance of laboratory data sets.


Sign in / Sign up

Export Citation Format

Share Document