scholarly journals Response Surface Methodology Routed Optimization of Performance of Hydroxy Gas Enriched Diesel Fuel in Compression Ignition Engines

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1355
Author(s):  
Muhammad Usman ◽  
Saifuddin Nomanbhay ◽  
Mei Yin Ong ◽  
Muhammad Wajid Saleem ◽  
Muneeb Irshad ◽  
...  

In this study, the response surface methodology (RSM) optimization technique was employed for investigating the impact of hydroxy gas (HHO) enriched diesel on performance, acoustics, smoke and exhaust gas emissions of the compression ignition (CI) engine. The engine was operated within the HHO flow rate range of 0–10 L/min and engine loads of 15%, 30%, 45%, 60% and 75%. The results disclosed that HHO concentration and engine load had a substantial influence on the response variables. Analysis of variance (ANOVA) results of developed quadratic models indicated the appropriate fit for all models. Moreover, the optimization of the user-defined historical design of an experiment identified an optimum HHO flow rate of 8 L/min and 41% engine load, with composite desirability of 0.733. The responses corresponding to optimal study factors were 25.44%, 0.315 kg/kWh, 117.73 ppm, 140.87 ppm, 99.37 dB, and 1.97% for brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), CO, HC, noise, and smoke, respectively. The absolute percentage errors (APEs) of RSM were predicted and experimental results were below 5%, which vouched for the reliable use of RSM for the prediction and optimization of acoustics and smoke and exhaust emission characteristics along with the performance of a CI engine.

2021 ◽  
Vol 13 (13) ◽  
pp. 7345
Author(s):  
Mohammed Aneeque ◽  
Saad Alshahrani ◽  
Mohammed Kareemullah ◽  
Asif Afzal ◽  
Ahamed Saleel C. ◽  
...  

In this experimental study, the performance of the diesel engine was analyzed for biodiesel derived from Calophyllum inophyllum. The impact of the addition of additives such as N-octanol and N-butanol with Calophyllum inophyllum biodiesel has been assessed. Impact of the application of hybrid N-octanol and N-Butanol with biodiesel on emission profile used for the engine performance has also been demonstrated. Response surface analysis of alcohol additives-biodiesel blend was performed separately in this study for the engine efficiency and emission profile. A combination of N-octanol and N-Butanol presented the highest brake thermal efficiency (BTE) and lowest carbon monoxide (CO) emission among the ternary blends of octanol. N-Butanol-biodiesel blend presented the lowest hydrocarbon (HC) emission among the blends of N-butanol. N-Octanol with 5 and 10% addition with biodiesel showed the lowest HC emissions among the blends of octanol. The response surface methodology (RSM) optimization revealed that the optimized thermal efficiency and emission were obtained at full load and minimum load, respectively. The addition of N-octanol hindered the emission at all loads, while N-butanol reduced it at higher loads. A strong correlation between the load and alcohol additives on the engine performance and emission profile has been obtained using the RSM optimization approach. The R-squared value obtained from the RSM was 0.92 and emission profile has been characterized.


2020 ◽  
Vol 32 (12) ◽  
pp. 3135-3143
Author(s):  
Chung Duong Dinh ◽  
Yen Nguyen Ngoc Thi ◽  
Khanh Quan Nguyen Huu ◽  
Duy Chinh Nguyen ◽  
Ung Thanh Dat ◽  
...  

In present work, the RP-HPLC method was established for the determination of bromhexine and salbutamol in syrup by using a design of experiment approach. The Plackett-Burman design was applied to screen the influence of independent variables (ratio of organic solvent and pH in mobile phase, flow rate, column temperature, sample injection volume and detection wavelength) on the output data of chromatographic signals (peak area, tailing factor, theoretical plates, resolution) of bromhexine and salbutamol. The Pareto diagram shows that the selected variables affect mainly target function. A central composite design has been used to optimize the values of main factors and Design expert® software predicts the interaction and quadratic model to evaluate the impact of input parameters on output. The optimal conditions were determined with the support of response surface methodology for flow rate 0.9 mL/min, temperature 25 °C and 60% methanol in water with 0.06% orthophosphoric acid as the mobile phase. Good linearity was observed in the concentration range of 8-48 μg/mL for bromhexine and 4-24 μg/mL for salbutamol with a significantly high correlation coefficient (R > 0.999). The limit of detection and limit of quantitation were 0.32 and 0.96 μg/mL, respectively for bromhexine and 0.08 and 0.25 μg/mL, respectively for salbutamol. This method was validated according to ICH guidelines.


Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3150
Author(s):  
Mengwei Xu ◽  
Chao Huang ◽  
Jing Lu ◽  
Zihan Wu ◽  
Xianxin Zhu ◽  
...  

Magnetic MXene composite Fe3O4@Ti3C2 was successfully prepared and employed as 17α-ethinylestradiol (EE2) adsorbent from water solution. The response surface methodology was employed to investigate the interactive effects of adsorption parameters (adsorption time, pH of the solution, initial concentration, and the adsorbent dose) and optimize these parameters for obtaining maximum adsorption efficiency of EE2. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Optimization of the process variables for maximum adsorption of EE2 by Fe3O4@Ti3C2 was performed using the quadratic model. The model predicted maximum adsorption of 97.08% under the optimum conditions of the independent variables (adsorption time 6.7 h, pH of the solution 6.4, initial EE2 concentration 0.98 mg L−1, and the adsorbent dose 88.9 mg L−1) was very close to the experimental value (95.34%). pH showed the highest level of significance with the percent contribution (63.86%) as compared to other factors. The interactive influences of pH and initial concentration on EE2 adsorption efficiency were significant (p < 0.05). The goodness of fit of the model was checked by the coefficient of determination (R2) between the experimental and predicted values of the response variable. The response surface methodology successfully reflects the impact of various factors and optimized the process variables for EE2 adsorption. The kinetic adsorption data for EE2 fitted well with a pseudo-second-order model, while the equilibrium data followed Langmuir isotherms. Thermodynamic analysis indicated that the adsorption was a spontaneous and endothermic process. Therefore, Fe3O4@Ti3C2 composite present the outstanding capacity to be employed in the remediation of EE2 contaminated wastewaters.


Author(s):  
Ramanathan Velmurugan ◽  
Jaikumar Mayakrishnan ◽  
S. Induja ◽  
Selvakumar Raja ◽  
Sasikumar Nandagopal ◽  
...  

Vegetable oil is considered as one among the promising alternatives for diesel fuel as it holds properties very close to diesel fuel. However, straight usage of vegetable oil in compression ignition (CI) engine resulted in inferior performance and emission behavior. This can be improved by modifying the straight vegetable oil into its esters, emulsion, and using them as a fuel in CI engine showcased an improved engine behavior. Waste cooking oil (WCO) is one such kind of vegetable oil gained a lot of attraction globally as it is generated in a large quantity locally. The present investigation aims at analyzing various parameters of single cylinder four stroke CI engine fueled with waste cooking oil biodiesel (WCOB), waste cooking oil biodiesel water emulsion (WCOBE) while the engine is operated with a constant speed of 1500 rpm. Furthermore, an attempt is made to study the impact of nanofluids in the behavior of the engine fueled with WCOB blended with nanofluids (WCOBN50). This work also explored a novel method of producing nanofluids using one-step chemical synthesis method. Copper oxide (CuO) nanofluids were prepared by the above mentioned method and blended with waste cooking oil biodiesel (WCOBN50) using ethylene glycol as a suitable emulsifier. Results revealed that brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) of WCOBN50 are significantly improved when compared to WCOB and WCOBE. Furthermore, a higher reduction in oxides of nitrogen (NOx), carbon monoxide (CO), hydrocarbon (HC), and smoke emissions were observed with WCOBN50 on comparison with all other tested fuels at different power outputs. It is also identified that one-step chemical synthesis method is a promising technique for preparing nanofluids with a high range of stability.


2017 ◽  
pp. 285-293
Author(s):  
Vesna Vasic ◽  
Aleksandar Jokic ◽  
Marina Sciban ◽  
Jelena Prodanovic ◽  
Jelena Dodic ◽  
...  

The present work studies the effect of operating parameters (pH, feed flow rate, and transmembrane pressure) on microfiltration of distillery stillage. Experiments were conducted in the presence of a Kenics static mixer as a turbulence promoter, and its influence on the flux improvement and specific energy consumption was examined. Response surface methodology was used to investigate the effect of selected factors on microfiltration performances. The results showed that response surface methodology is an appropriate model for mathematical presentation of the process. It was found that the use of a static mixer is justified at the feed flow rates higher than 100 L/h. In contrast, the use of a static mixer at low values of feed flow rate and transmembrane pressure has no justification from an economic point of view.


2018 ◽  
Vol 77 (6) ◽  
pp. 1765-1776 ◽  
Author(s):  
Gagik Badalians Gholikandi ◽  
Khashayar Kazemirad

Abstract In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H2O2 concentration and the retention time were 3, 3.2 mA/cm2, 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8–2.5 kWh (kg VSS removed)−1) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2–3 kWh (kg VSS removed)−1). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe2+ concentrations into the system and the VSS removal efficiency of the process precisely.


2021 ◽  
Vol 406 ◽  
pp. 319-333
Author(s):  
Tahar Saadi ◽  
Mohamed Farid Benlamnouar ◽  
Nabil Bensaid ◽  
Amar Boutaghane ◽  
Mohamed Amine Soualili ◽  
...  

The present study, aims to investigate, under welding parameters of current, voltage and gas flow, the effects of welding parameters on tensile strength of AISI 304L ASS welds using response surface methodology (RSM). The RSM and variance analysis (ANOVA) were used to check the validity of quadratic regression model and to determine the significant parameter affecting tensile strength of welds. Hence, ANOVA clearly revealed that the contribution of each factor is 71.40% of voltage, 19.2% of current and 8.30% of gas flow. It was found that combined contributions of welding parameters contributes significantly to the metallurgical changes by varying fractions, morphology and grain size of metallic compounds. Furthermore, the optimum automatic welding conditions lead to produce the best possible weld quality in the range of our experiment using desirability function approach for single response of RSM optimization factors, in which it concluded that tensile strength components are influenced principally by voltage. Finally, the ranges for best welding conditions are proposed for serial industrial production.


Sign in / Sign up

Export Citation Format

Share Document