scholarly journals Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2079
Author(s):  
Paulo Henrique de Oliveira Costa ◽  
Sidney Vasconcelos do Nascimento ◽  
Hector Herrera ◽  
Markus Gastauer ◽  
Silvio Junio Ramos ◽  
...  

Mimosa acutistipula var. ferrea (Fabaceae) is endemic to ferruginous tropical rocky outcrops in the eastern Amazon, also known as canga. Canga are often associated with mining activities and are the target of protection and rehabilitation projects. M. acutistipula stands out in this biodiversity hotspot with high growth rates, even in rehabilitating minelands (RMs). However, little is known about the diversity of soil microorganisms interacting with M. acutistipula in canga and RMs. This study analyzed the rhizosphere-associated bacterial and fungal microbial communities associated with M. acutistipula growing in an RM and a native shrub canga. The fungal phylum Ascomycota was the dominant taxa identified in the rhizosphere of the canga (RA: 98.1) and RM (RA: 93.1). The bacterial phyla Proteobacteria (RA: 54.3) and Acidobacteria (RA: 56.2) were the dominant taxa identified in the rhizosphere in the canga and RM, respectively. Beneficial genera such as Bradyrhizobium, Rhodoplanes, and Paraconiothyrium were identified in the rhizosphere of M. acutistipula in both areas. However, the analyses showed that the fungal and bacterial diversity differed between the rhizosphere of the canga and RM, and that the microbial taxa adapted to the canga (i.e., Rasamsonia, Scytalidium, Roseiarcus, and Rhodomicrobium) were lacking in the RM. This influences the microbe-mediated soil processes, affecting long-term rehabilitation success. The results showed that M. acutistipula established non-specific interactions with soil microorganisms, including beneficial taxa such as nitrogen-fixing bacteria, mycorrhizal fungi, and other beneficial endophytes, well known for their importance in plant adaptation and survival. High levels of microbe association and a plant’s ability to recruit a wide range of soil microorganisms help to explain M. acutistipula’s success in rehabilitating minelands.

2021 ◽  
Author(s):  
Juan F. Dueñas ◽  
Stefan Hempel ◽  
Jürgen Homeier ◽  
Juan Pablo Suárez ◽  
Matthias C Rillig ◽  
...  

Andean forests are biodiversity hotspots and globally important carbon (C) repositories. This status might be at risk due to increasing rates of atmospheric nutrient deposition. As fungal communities are key in the recirculation of soil nutrients, assessing their responses to soil eutrophication can help establish a link between microbial biodiversity and the sustainability of the C sink status of this region. Beyond mycorrhizal fungi, which have been studied more frequently, a wide range of other fungi associate with the fine root fraction of trees. Monitoring these communities can offer insights into how communities composed of both facultative and obligate root associated fungi are responding to soil eutrophication. Here we document the response of non-mycorrhizal root associated fungal (RAF) communities to a long-term nutrient manipulation experiment. The stand level fine root fraction of an old growth tropical montane forest was sampled after seven years of nitrogen (N) and phosphorus (P) additions. RAF communities were characterized by a deep sequencing approach. As per the resource imbalance model, we expected that asymmetries in the availability of C, N and P elicited by fertilization will lead to mean richness reductions and alterations of the community structure. We recovered moderately diverse fungal assemblages composed by sequence variants classified within a wide set of trophic guilds. While mean richness remained stable, community composition shifted, particularly among Ascomycota and after the addition of P. Fertilization factors, however, only accounted for a minor proportion of the variance in community composition. These findings suggest that, unlike mycorrhizal fungi, RAF communities are less sensitive to shifts in soil nutrient availability. A plausible explanation is that non-mycorrhizal RAF have fundamentally different nutrient acquisition and life history traits, thus allowing them greater stoichiometric plasticity and an array of functional acclimation responses that collectively express as subtle shifts in community level attributes.


2020 ◽  
Author(s):  
Jing-Zhong Lu ◽  
Stefan Scheu

AbstractTree - soil interactions depend on environmental context. Plantations of trees may impact soil microorganisms more strongly under unfavorable environmental conditions, compromising long-term ecosystem services. To contextually understand the effects of tree species composition on soil microorganisms, we quantified structural and functional responses of soil microorganisms to forest types across environmental gradients using substrate-induced respiration and phospholipid fatty acid analyses. Five forest types were studied including pure stands of native European beech (Fagus sylvatica), range expanding Norway spruce (Picea abies), and non-native Douglas-fir (Pseudotsuga menziesii), as well as the two conifer - beech mixtures. We found that microbial functioning strongly depends on environmental conditions, in particular on soil nutrients. At nutrient-poor sites, both pure and mixed coniferous forests, but especially Douglas-fir forests, stressed soil microorganisms compared to beech forests. By contrast, microbial structure and functional indicators in beech forests varied little with site conditions, likely because beech provided high amounts of root-derived resources for microbial growth. The results indicate that, at nutrient-poor sites, long-term effects of planting exotic Douglas-fir on ecosystem functioning need further attention, but planting Douglas-fir at nutrient-rich sites may be of little concern from the perspective of microbial communities. Overall, the results point to the importance of root-derived resources in determining the structure and functioning of soil microbial communities, and document the sensitivity of soil microorganisms to planting tree species that may differ in the provisioning of these resources.


2020 ◽  
Vol 8 (9) ◽  
pp. 1377 ◽  
Author(s):  
Martina Kracmarova ◽  
Jana Karpiskova ◽  
Ondrej Uhlik ◽  
Michal Strejcek ◽  
Jirina Szakova ◽  
...  

An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers.


2020 ◽  
pp. 66-73
Author(s):  
A. Simonova ◽  
S. Chudakov ◽  
R. Gorenkov ◽  
V. Egorov ◽  
A. Gostry ◽  
...  

The article summarizes the long-term experience of practical application of domestic breakthrough technologies of preventive personalized medicine for laboratory diagnostics of a wide range of socially significant non-infectious diseases. Conceptual approaches to the formation of an integrated program for early detection and prevention of civilization diseases based on these technologies are given. A vision of the prospects for the development of this area in domestic and foreign medicine has been formed.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2017 ◽  
Vol 68 (3) ◽  
pp. 599-601
Author(s):  
Dan Paul Stefanescu ◽  
Oana Roxana Chivu ◽  
Claudiu Babis ◽  
Augustin Semenescu ◽  
Alina Gligor

Any economic activity carried out by an organization, can generate a wide range of environmental implications. Particularly important, must be considered the activities that have a significant negative effect on the environment, meaning those which pollute. Being known the harmful effects of pollution on the human health, the paper presents two models of utmost importance, one of the material environment-economy interactions balance and the other of the material flows between environmental factors and socio-economic activities. The study of these models enable specific conditions that must be satisfied for the economic processes friendly coexist to the environment for long term, meaning to have a minimal impact in that the residues resulting from the economic activity of the organization to be as less harmful to the environment.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 436E-436
Author(s):  
Martin P.N. Gent

The persistence of effects of paclobutrazol or uniconazol on stem elongation was determined for several years after large-leaf Rhododendron and Kalmia latifolia were treated with a single-spray application of these triazol growth-regulator chemicals. Potted plants were treated in the second year from propagation, and transplanted into the field in the following spring. The elongation of stems was measured in the year of application and in the following 2 to 4 years. Treatments with a wide range of doses were applied in 1991, 1992, or 1995. For all except the most-dilute applications, stem elongation was retarded in the year following application. At the highest doses, stem growth was inhibited 2 years following application. The results could be explained by a model of growth regulator action that assumed stem elongation was inversely related to amount of growth regulator applied. The dose response coefficient for paclobutrazol was less than that for uniconazol. The dose that inhibited stem elongation one-half as much as a saturating dose was about 0.5 and 0.05 mg/plant, for paclobutrazol and uniconazol, respectively. The dose response coefficient decreased exponentially with time after application, with an exponential time constant of about 2/year. The model predicted a dose of growth regulator that inhibited 0.9 of stem elongation immediately after application would continue to inhibit 0.5 of stem elongation in the following year.


2019 ◽  
Vol 20 (3) ◽  
pp. 251-264 ◽  
Author(s):  
Yinlu Feng ◽  
Zifei Yin ◽  
Daniel Zhang ◽  
Arun Srivastava ◽  
Chen Ling

The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.


Sign in / Sign up

Export Citation Format

Share Document