scholarly journals Radiation Response of Human Cardiac Endothelial Cells Reveals a Central Role of the cGAS-STING Pathway in the Development of Inflammation

Proteomes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 30
Author(s):  
Jos Philipp ◽  
Ronan Le Gleut ◽  
Christine von Toerne ◽  
Prabal Subedi ◽  
Omid Azimzadeh ◽  
...  

Radiation-induced inflammation leading to the permeability of the endothelial barrier may increase the risk of cardiovascular disease. The aim of this study was to investigate potential mechanisms in vitro at the level of the proteome in human coronary artery endothelial cells (HCECest2) that were exposed to radiation doses of 0, 0.25, 0.5, 2.0 and 10 Gy (60Co-γ). Proteomics analysis was performed using mass spectrometry in a label-free data-independent acquisition mode. The data were validated using bioinformatics and immunoblotting. The low- and moderate-dose-irradiated samples (0.25 Gy, 0.5 Gy) showed only scarce proteome changes. In contrast, an activation of DNA-damage repair, inflammation, and oxidative stress pathways was seen after the high-dose treatments (2 and 10 Gy). The level of the DNA damage response protein DDB2 was enhanced early at the 10 Gy dose. The expression of proteins belonging to the inflammatory response or cGAS-STING pathway (STING, STAT1, ICAM1, ISG15) increased in a dose-dependent manner, showing the strongest effects at 10 Gy after one week. This study suggests a connection between the radiation-induced DNA damage and the induction of inflammation which supports the inhibition of the cGAS-STING pathway in the prevention of radiation-induced cardiovascular disease.

Author(s):  
Melpo Christofidou-Solomidou ◽  
James C. Lee ◽  
Floyd Dukes ◽  
Evguenia Arguiri ◽  
Shampa Chatterjee ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5752
Author(s):  
Basseem Radwan ◽  
Adriana Adamczyk ◽  
Szymon Tott ◽  
Krzysztof Czamara ◽  
Katarzyna Kaminska ◽  
...  

Endothelial cells (EC) constitute a single layer of the lining of blood vessels and play an important role in maintaining cardiovascular homeostasis. Endothelial dysfunction has been recognized as a primary or secondary cause of many diseases and it manifests itself, among others, by increased lipid content or a change in the lipid composition in the EC. Therefore, the analysis of cellular lipids is crucial to understand the mechanisms of disease development. Tumor necrosis factor alpha (TNF-α)-induced inflammation of EC alters the lipid content of cells, which can be detected by Raman spectroscopy. By default, lipid detection is carried out in a label-free manner, and these compounds are recognized based on their spectral profile characteristics. We consider (3S,3′S)-astaxanthin (AXT), a natural dye with a characteristic resonance spectrum, as a new Raman probe for the detection of lipids in the EC of various vascular beds, i.e., the aorta, brain and heart. AXT colocalizes with lipids in cells, enabling imaging of lipid-rich cellular components in a time-dependent manner using laser power 10 times lower than that commonly used to measure biological samples. The results show that AXT can be used to study lipids distribution in EC at various locations, suggesting its use as a universal probe for studying cellular lipids using Raman spectroscopy. The use of labeled Raman imaging of lipids in the EC of various organs could contribute to their easier identification and to a better understanding of the development and progression of various vascular diseases, and it could also potentially improve their diagnosis and treatment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2359-2359
Author(s):  
Larisa Pereboeva ◽  
Erik Westin ◽  
Toral Patel ◽  
Ian Flaniken ◽  
Lawrence S. Lamb ◽  
...  

Abstract Abstract 2359 Introduction: Dyskeratosis congenita (DC) is an inherited multisystem disorder consisting of premature aging, cancer predisposition, bone marrow failure and the characteristic triad of mucosal leukoplakia, skin dyspigmentation and nail dystrophy. Symptomology associated with DC arises as a consequence of mutations within genes associated with telomeres and telomerase activity manifested by critically shortened telomeres in affected cells. We have previously reported a growth disadvantage and increased intracellular oxidative stress in cultured somatic cells obtained from patients with DC. We hypothesize that telomere maintenance is closely linked to dysregulation in oxidative pathways and consequent DNA damage. Our objective was to discern whether pharmacologic intervention to alleviate oxidative stress imparts a protective effect in DC cells. Methods: T lymphocytes from both DC subjects with hTERC mutations and age-matched controls were cultured and expanded in vitro using CD3/CD28 beads. DNA damage to cells was induced using paclitaxel, etoposide, or ionizing radiation during log-phase of cell growth. Cellular proliferation and apoptosis were monitored by cell counting and flow cytometry (FACS) using Annexin V antibody and propidium iodide. Western blotting was used to measure basal and radiation-induced expression of DNA damage response (DDR) proteins, including total p53 and its activated form (serine 15 phosphorylated; p53S15), p21WAF, and phosphorylated H2AX (gH2AX). Level of oxidative stress was determined by FACS using the cell-permeable fluorogenic probe DCFH and dihydroethedium (DHE) detecting reactive oxygen species (ROS). Anti-oxidants, including vitamin E and N acetyl cysteine (NAC), were used in vitro to modulate levels of oxidative stress in control and radiated cells. Results: Comparison of growth curves demonstrated a significant decrease in proliferation of T cells obtained from DC patients versus control T cells. This growth disadvantage was more pronounced following cell exposure to radiation, paclitaxel, and etoposide. To explain these differences we investigated several parameters indicative of DNA damage. DC lymphocytes had higher basal levels of apoptosis, while radiation resulted in comparable levels of apoptosis in both DC and control cultures. Similarly, DDR markers p53 and p53S15, but not p21 and g-H2AX, were basally expressed at higher levels in DC lymphocytes while radiation, in a dose-dependent manner, upregulated expression of p53, p53S15, p21 and g-H2AX in both DC and control lymphocytes. Consistent with DDR data, elevated basal levels of ROS were found in short term DC cultures. Additionally, in a dose dependent manner, the anti-oxidant NAC partially ameliorated the growth disadvantage of DC cells. Importantly, NAC also decreased radiation-induced apoptosis and oxidative stress in DC cells. Studies are ongoing to characterize the modulation of DDR markers in NAC-treated cells. Conclusions: DC is an important disease model for studying the effects of telomere shortening on cellular proliferation and other molecular pathways involved in cell senescence and aging. Our findings of elevated basal levels of apoptosis, DDR proteins and oxidative stress in DC lymphocytes, as well as increased sensitivity of DC cells to cytotoxic agents suggests a role of telomerase and/or telomere length in regulating oxidative and DNA damage response pathways. This data also validates the clinical finding of DC patients' intolerance to myeloablative therapy. Finally a pharmacologic approach to reduce oxidative stress may alleviate some of the untoward toxicities associated with current cytotoxic treatments in DC. Clinical trials testing various anti-oxidant therapies are currently under design. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Zhenzhen Zhang ◽  
Chuandi Zhou ◽  
Deji Draga ◽  
lhamo Thashi ◽  
Zhi Zheng ◽  
...  

Abstract Background: LingqiHuangban Granule(LQHBG) is a famous traditional Chinese medicine formula used to manage retinal diseases, as an effective holistic treatment through warming Yang to exert tonifying effects on kidney and invigorating spleen to remove dampness to nourish essence of effect. The study examined protection of LQHBG on oxidative stress-induced injury in human retinal endothelial cells(HRECs) in vitro, determined the potential molecular targets of LQHBG using network pharmacology.Methods: The potential targets of active ingredients in LQHBG were predicted using pharmmapper. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out using Molecule Annotation System. The protein-protein interaction networks were constructed using Cytoscape. LQHBG was administered to rabbits to prepare medicated serum. The apoptosis of HRECs was evaluated by TUNEL and Flow Cytometry(FCM). MDA, SOD, LDH, GSH-Px, and T-AOC were detected. The mRNA expressions of Nrf2, NF-κB and HO-1 were detected, protein expression levels of Nrf2, Bcl-2, NF-κB, HO-1 and caspase-3 were analyzed.Results: TUNEL demonstrated the numbers of apoptotic cells in low-and high-dose LQHBG groups was obviously less than model group(P<0.05). FCM analysis revealed apoptotic rates of HRECs in low-and high-dose LQHBG groups were obviously reduced in a dose-dependent manner(P<0.05). The potential mechanism of LQHBG was the NF-κB pathway identified using PharmMapper. LQHBG significantly decreased MDA, LDH levels and enhanced SOD, GSH-Px and T-AOC generation. LQHBG inhibited upregulation of NF-κB, caspase-3 and enhanced Bcl-2, Nrf2, and HO-1 expression.Conclusion: LQHBG protected HRECs against oxidative-stress via suppression of apoptosis and elevation of antioxidant ability, which may involve activation of Nrf2/ARE/HO-1 pathway and inhibition of NF-κB pathway.


2013 ◽  
Vol 131 (2) ◽  
pp. AB38
Author(s):  
Akio Matsuda ◽  
Hideaki Morita ◽  
Hirotoshi Unno ◽  
Hirohisa Saito ◽  
Kenji Matsumoto ◽  
...  

Author(s):  
Maurizio Gelati ◽  
Elena Corsini ◽  
Anna Dufour ◽  
Giorgio Massa ◽  
Sergio Giombini ◽  
...  

Objective:We investigated the in vitro effects of low- and high-dose methylprednisolone (MP) on the cytokine-induced expression of HLA-DR, ICAM-1 and VCAM-1 on human brain microvessel endothelial cells (HBMECs).Methods:Brain endothelium was obtained from microvessels included in the apparently normal white matter of surgical specimens of nine patients. Cells were stained with monoclonal antibodies anti-HLA-DR, anti-ICAM-1 and anti-VCAM-1 and analysed by flow cytometry as fluorescence histograms. The mean fluorescence intensity (MFI) of HBMECs treated with different stimuli was calculated.Results:3-IFN-induced HLA-DR was down-regulated in a dose-dependent manner by MP. High-dose MP reduced the TNF-3-induced ICAM-1 and VCAM-1 expression.Conclusion:The down-regulation of adhesion molecules on cerebral endothelial cells could decrease mononuclear cell transmigration through the blood brain barrier and consequently the perivascular infiltrates. The results add support to the rationale for high-dose MP treatment in multiple sclerosis relapses.


Dose-Response ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 155932581875523 ◽  
Author(s):  
Juliana Vieira Dias ◽  
Celine Gloaguen ◽  
Dimitri Kereselidze ◽  
Line Manens ◽  
Karine Tack ◽  
...  

A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.


2021 ◽  
Author(s):  
Yan-yan Zhang ◽  
Gao-yun Xiong ◽  
Xiao-xing Xie

Radiation-induced hair cell injury is detrimental for human health but the underlying mechanism is not clear. MicroRNAs (miRNAs) have critical roles in various types of cellular biological processes. The present study investigated the role of miR-222 in the regulation of ionizing radiation (IR)-induced cell injury in auditory cells and its underlying mechanism. Real time PCR was performed to identify the expression profile of miR-222 in the cochlea hair cell line HEI-OC1 after IR exposure. miRNA mimics or inhibitor-mediated upregulation or downregulation of indicated miRNA was applied to characterize the biological effects of miR-222 using MTT, apoptosis and DNA damage assay. Bioinformatic analyses and luciferase reporter assays were applied to identify a miRNA target gene. Our study confirmed that IR treatment significantly suppressed miR-222 levels in a dose-dependent manner. Upregulation of miR-222 enhances cell viability and alleviated IR-induced apoptosis and DNA damage in HEI-OC1 cells. In addition, BCL-2-like protein 11 (BCL2L11) was validated as a direct target of miR-222. Overexpression of BCL2L11 abolished the protective effects of miR-222 in IR-treated HEI-OC1 cells. Moreover, miR-222 alleviated IR-induced apoptosis and DNA damage by directly targeting BCL2L11.The present study demonstrates that miR-222 exhibits protective effects against irradiation‑induced cell injury by directly targeting BCL2L11 in cochlear cells.


Sign in / Sign up

Export Citation Format

Share Document