scholarly journals Performance of the State-Of-The-Art Gridded Precipitation Products over Mountainous Terrain: A Regional Study over Austria

2019 ◽  
Vol 11 (17) ◽  
pp. 2018 ◽  
Author(s):  
Ehsan Sharifi ◽  
Josef Eitzinger ◽  
Wouter Dorigo

During the last decade, satellite-based precipitation products have been believed to be a potential source for forcing inputs in hydro-meteorological and agricultural models, which are essential especially over the mountains area or in basins where ground gauges are generally sparse or nonexistent. This study comprehensively evaluates several newly released precipitation products, i.e., MSWEP-V2.2, IMERG-V05B, IMERG-V06A, IMERG-V05-RT, ERA5, and SM2RAIN-ASCAT, at daily and monthly time-scales over Austria. We show that all the examined products are able to reproduce the spatial precipitation distribution over the country. MSWEP, followed by IMERG-V05B and -V06A, show the strongest agreement with in situ observations and perform better than other products with respect to spatial patterns and statistical metrics. Both IMERG and ERA5 products seem to have systematic precipitation overestimation at the monthly time-scale. IMERG-V06A performs slightly better than IMERG-V05B. With respect to heavy precipitation (P > 10 mm/day), MSWEP compare to other products demonstrate advantages in detecting precipitation events with a higher spatial average of probability of detection (POD) and lower false alarm ratio (FAR) scores skill (0.74 and 0.28), while SM2RAIN and ERA5 reveal lower POD (0.35) and higher FAR (0.56) in this precipitation range in comparison with other products. However, the ERA5 and MSWEP indicate robust average POD and FAR values with respect to light/moderate precipitation (10 mm > P ≥ 0.1 mm) with 0.94 and 0.11, respectively. Such robustness of MSWEP may be rooted in applying the daily rain gauges in calibration processes. Moreover, although all products accurately map the spatial precipitation distribution they still have difficulty capturing the effects of topography on precipitation. The overall performance of the precipitation products was lower in the peripheries of the study area where most stations are situated in the mountainous area and was higher over the low altitude regions. However, according to our analysis of the considered products, MSWEP-V2.2, followed by IMERG-V06S and -V05B, are the most suitable for driving hydro-meteorological, agricultural, and other models over mountainous terrain.

2020 ◽  
Author(s):  
Ehsan Sharifi ◽  
Wouter Dorigo ◽  
Josef Eitzinger

<p>Accurate precipitation measurement is crucial for hydrological modeling and weather forecasting. During the last decade, considerable progress has been made in satellite-based precipitation products that could be a potential source as inputs in hydro-meteorological and agricultural models, which are essential especially over the mountains area or in basins where ground gauges are generally sparse or nonexistent. This study comprehensively examined the performance of several newly released precipitation products, i.e., MSWEP-V2.2, IMERG-V05B, IMERG-V06A, IMERG-V05-RT, ERA5, and SM2RAIN-ASCAT, with emphasis on their performance based on elevation and extreme events. The analysis has been conducted at daily time-scales over Austria for the period June 2014–December 2015, using a dense network of gauges (882 stations) as a reference. Since Austria characterized by complex terrain and a big difference in altitude over the country, the annual mean precipitation range significantly varies with elevation and climate conditions. Therefore, the microclimate can be created due to rapid changes in elevation which cause obstruct the air mass movement or this rapid changes in elevation can cause the updraft of the air mass over the mountains to create orographic rainfall.</p><p>The results showed that the number of extreme days is double over the Alpine area in comparison to low altitude regions. The 90% percentile level of wet days (P ≥ 0.1 mm) as the R90th of the stations showed the maximum values at high-elevation areas (Alpine mountains). The spatial distribution of the R90th for MSWEP, IMERG-V05B, and –V06a were rather similar to observations with higher number of days for the precipitation threshold above 90th percentile over the south part of Austria. In contrast, ERA5 underestimated the frequency of the extreme events over the big part of the south region, while showed higher number of extreme days over north Austria. Moreover, SM2RAIN, displayed underestimation of the R90th, almost over the whole country. It was evident that with the increase of elevation, the mean RMSE, MAE, and bias increase and CC decreases. With respect to heavy precipitation (P > 10 mm/day), MSWEP compare to other products demonstrate advantages in detecting precipitation events with a higher spatial average of probability of detection (POD) and lower false alarm ratio (FAR) scores skill (0.74 and 0.28), while SM2RAIN and ERA5 reveal lower POD (0.35) and higher FAR (0.56) in this precipitation range in comparison with other products. However, according to our analysis of the considered products, MSWEP-V2.2, followed by IMERG-V06A and -V05B, are the most suitable for driving hydro-meteorological, agricultural, and other models over mountainous terrain.</p><p> </p><p><strong>Reference:</strong> Sharifi, E., Eitzinger, J., Dorigo, W. (2019). Performance of the State-Of-The-Art Gridded Precipitation Products Over Mountainous Terrain. A Regional Study Over Austria. Remote Sensing 11(17), 2018, https://doi.org/10.3390/rs11172018.</p>


2014 ◽  
Vol 15 (4) ◽  
pp. 1473-1485 ◽  
Author(s):  
Susan Stillman ◽  
Jason Ninneman ◽  
Xubin Zeng ◽  
Trenton Franz ◽  
Russell L. Scott ◽  
...  

Abstract Soil moisture is important for many applications, but its measurements are lacking globally and even regionally. The Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona has measured near-surface 5-cm soil moisture with 19 in situ probes since 2002 within its 150 km2 area. Using various criteria to identify erroneous data, it is found that in any given period from 1 July to 30 September from 2002 to 2011, 13–17 of these probes were producing reasonable data, and this is sufficient to estimate area-averaged seasonal soil moisture. A soil water balance model is then developed using rainfall as its only input to spatially extrapolate soil moisture estimates to the 88 rain gauges located within the watershed and to extend the measurement period to 56 years. The model is calibrated from 2002 to 2011 so that the daily in situ and modeled soil moisture time series have a high average correlation of 0.89 and a root-mean-square deviation of 0.032 m3 m−3. By interpolating modeled soil moisture from the 88 rain gauges to a 100-m gridded domain over WGEW, it is found that spatial variability often increases when 88 (rather than 13–17) estimates are taken. While no trend in the spatial average surface soil moisture is found, large variability in the spatial average soil moisture from 1 July to 30 September is observed from year to year, ranging from 0.05 to 0.09 m3 m−3. In addition to spatiotemporal analysis of WGEW, this gridded soil moisture product from 1956 to 2011 can be used for validation of satellite-based and reanalysis products and land surface models.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 147
Author(s):  
Muhammad Naveed Anjum ◽  
Muhammad Irfan ◽  
Muhammad Waseem ◽  
Megersa Kebede Leta ◽  
Usama Muhammad Niazi ◽  
...  

This study compares the performance of four satellite-based rainfall products (SRPs) (PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0) in a semi-arid subtropical region. As a case study, Punjab Province of Pakistan was considered for this assessment. Using observations from in-situ meteorological stations, the uncertainty in daily, monthly, seasonal, and annual rainfall estimates of SRPs at pixel and regional scales during 2010–2018 were examined. Several evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias), as well as categorical indices (Probability of Detection (POD), Critical Success Index (CSI), and False Alarm Ration (FAR)) were used to assess the performance of the SRPs. The following findings were found: (1) CHIRPS-2.0 and SM2RAIN-ASCAT products were capable of tracking the spatiotemporal variability of observed rainfall, (2) all SRPs had higher overall performances in the northwestern parts of the province than the other parts, (3) all SRP estimates were in better agreement with ground-based monthly observations than daily records, and (4) on the seasonal scale, CHIRPS-2.0 and SM2RAIN-ASCAT were better than PERSIANN-CCS and PERSIANN. In all seasons, CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PERSIANN-CCS and PERSIANN-CDR. Based on our findings, we recommend that hydrometeorological investigations in Pakistan’s Punjab Province employ monthly estimates of CHIRPS-2.0 and SM2RAIN-ASCAT products.


2020 ◽  
Vol 12 (23) ◽  
pp. 3871
Author(s):  
Ali Hamza ◽  
Muhammad Naveed Anjum ◽  
Muhammad Jehanzeb Masud Cheema ◽  
Xi Chen ◽  
Arslan Afzal ◽  
...  

In this study, the performances of four satellite-based precipitation products (IMERG-V06 Final-Run, TRMM-3B42V7, SM2Rain-ASCAT, and PERSIANN-CDR) were assessed with reference to the measurements of in-situ gauges at daily, monthly, seasonal, and annual scales from 2010 to 2017, over the Hindu Kush Mountains of Pakistan. The products were evaluated over the entire domain and at point-to-pixel scales. Different evaluation indices (Correlation Coefficient (CC), Root Mean Square Error (RMSE), Bias, and relative Bias (rBias)) and categorical indices (False Alarm Ration (FAR), Critical Success Index (CSI), Success Ratio (SR), and Probability of Detection (POD)) were used to assess the performances of the products considered in this study. Our results indicated the following. (1) IMERG-V06 and PERSIANN capably tracked the spatio-temporal variation of precipitation over the studied region. (2) All satellite-based products were in better agreement with the reference data on the monthly scales than on daily time scales. (3) On seasonal scale, the precipitation detection skills of IMERG-V06 and PERSIANN-CDR were better than those of SM2Rain-ASCAT and TRMM-3B42V7. In all seasons, overall performance of IMERG-V06 and PERSIANN-CDR was better than TRMM-3B42V7 and SM2Rain-ASCAT. (4) However, all products were uncertain in detecting light and moderate precipitation events. Consequently, we recommend the use of IMERG-V06 and PERSIANN-CDR products for subsequent hydro-meteorological studies in the Hindu Kush range.


2021 ◽  
Author(s):  
Sridhar Gummadi ◽  
Tufa Dinku ◽  
Paresh B. Shirsath ◽  
Dakshina Murthy Kadiyala

Abstract High-resolution reliable rainfall datasets are vital for agricultural, hydrological, and weather-related applications. The accuracy of satellite estimates has a significant effect on simulation models in particular crop simulation models, which are highly sensitive to rainfall amounts, distribution, and intensity. In this study, we evaluated five widely used operational satellite rainfall estimates: CHIRP, CHIRPS, CPC, CMORPH, and GSMaP. These products are evaluated by comparing with the latest improved Vietnam-gridded rainfall data to determine their suitability for use in impact assessment models. CHIRP/S products are significantly better than CMORPH, CPC, and GsMAP with higher skill, low bias, showing a high correlation coefficient with observed data, and low mean absolute error and root mean square error. The rainfall detection ability of these products shows that CHIRP outperforms the other products with a high probability of detection (POD) scores. The performance of the different rainfall datasets in simulating maize yields across Vietnam shows that VnGP and CHIRP/S were capable of producing good estimates of average maize yields with RMSE ranging from 536 kg/ha (VnGP), 715 kg/ha (CHIRPS), 737 kg/ha (CHIRP), 759 kg/ha (GsMAP), 878 kg/ha (CMORPH) to 949 kg/ha (CPC). We illustrated that there is a potential for use of satellite rainfall estimates to overcome the issues of data scarcity in regions with sparse rain gauges.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


1964 ◽  
Vol 45 (4) ◽  
pp. 535-559 ◽  
Author(s):  
E. Bolté ◽  
S. Mancuso ◽  
G. Eriksson ◽  
N. Wiqvist ◽  
E. Diczfalusy

ABSTRACT In 15 cases of therapeutic abortion by laparotomy the placenta was disconnected from the foetus and perfused in situ with tracer amounts of radioactive dehydroepiandrosterone (DHA), dehydroepiandrosterone sulphate (DHAS), androst-4-ene-3,17-dione (A), testosterone (T) and 17β-oestradiol (OE2). Analysis of the placentas, perfusates and urine samples revealed an extensive aromatisation of DHA, A and T; more than 70% of the radioactive material recovered was phenolic, and at least 80 % of this phenolic material was identified as oestrone (OE1), 17β-oestradiol (OE2) and oestriol (OE3), the latter being detected only in the urine. Comparative studies indicated that A and T were aromatised somewhat better than DHA and that all three unconjugated steroids were aromatised to a much greater extent than DHAS. Radioactive OE1 and OE2 were isolated and identified in the placentas and perfusates, but no OE3, epimeric oestriols, or ring D ketols could be detected in these sources, not even when human chorionic gonadotrophin (HCG) was added to the blood prior to perfusion. Lack of placental 16-hydroxylation was also apparent when OE2 was perfused. Regardless of the precursor perfused, there was three times more OE2 than OE1 in the placenta and three times more OE1 than OE2 in the perfusate. This was also the case following perfusion with OE2. The results are interpreted as suggesting the existence in the pregnant human of a placental »barrier« limiting the passage of circulating androgen. The barrier consists of a) limited ability to transfer directly DHAS and b) an enzymic mechanism resulting in the rapid and extensive aromatisation of the important androgens DHA, A and T.


2017 ◽  
Author(s):  
Amanda H. Schmidt ◽  
◽  
Paul R. Bierman ◽  
Veronica Sosa-Gonzalez ◽  
Thomas B. Neilson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (6) ◽  
pp. 1208
Author(s):  
Linfei Yu ◽  
Guoyong Leng ◽  
Andre Python ◽  
Jian Peng

This study evaluated the performance of the early, late and final runs of IMERG version 06 precipitation products at various spatial and temporal scales in China from 2008 to 2017, against observations from 696 rain gauges. The results suggest that the three IMERG products can well reproduce the spatial patterns of precipitation, but exhibit a gradual decrease in the accuracy from the southeast to the northwest of China. Overall, the three runs show better performances in the eastern humid basins than the western arid basins. Compared to the early and late runs, the final run shows an improvement in the performance of precipitation estimation in terms of correlation coefficient, Kling–Gupta Efficiency and root mean square error at both daily and monthly scales. The three runs show similar daily precipitation detection capability over China. The biases of the three runs show a significantly positive (p < 0.01) correlation with elevation, with higher accuracy observed with an increase in elevation. However, the categorical metrics exhibit low levels of dependency on elevation, except for the probability of detection. Over China and major river basins, the three products underestimate the frequency of no/tiny rain events (P < 0.1 mm/day) but overestimate the frequency of light rain events (0.1 ≤ P < 10 mm/day). The three products converge with ground-based observation with regard to the frequency of rainstorm (P ≥ 50 mm/day) in the southern part of China. The revealed uncertainties associated with the IMERG products suggests that sustaining efforts are needed to improve their retrieval algorithms in the future.


2019 ◽  
Vol 219 ◽  
pp. 08003
Author(s):  
Maja Verstraeten

The SoLid Collaboration is currently operating a 1.6 ton neutrino detector near the Belgian BR2 reactor. Its main goal is the observation of the oscillation of electron antineutrinos to previously undetected flavour states. The highly segmented SoLid detector employs a compound scintillation technology based on PVT scintillator in combination with LiF-ZnS(Ag) screens containing the 6Li isotope. The experiment has demonstrated a channel-to-channel response that can be controlled to the level of a few percent, an energy resolution of better than 14% at 1 MeV, and a determination of the interaction vertex with a precision of 5 cm. This contribution highlights the major outcomes of the R&D program, the quality control during component manufacture and integration, the current performance and stability of the full-scale system, as well as the in-situ calibration of the detector with various radioactive sources.


Sign in / Sign up

Export Citation Format

Share Document