scholarly journals Estimation of Alpine Grassland Forage Nitrogen Coupled with Hyperspectral Characteristics during Different Growth Periods on the Tibetan Plateau

2019 ◽  
Vol 11 (18) ◽  
pp. 2085 ◽  
Author(s):  
Jinlong Gao ◽  
Tiangang Liang ◽  
Jianpeng Yin ◽  
Jing Ge ◽  
Qisheng Feng ◽  
...  

The applicability of hyperspectral remote sensing models for forage nitrogen (N) retrieval during different growth periods is limited. This study aims to develop a multivariate model feasible for estimating the forage N for the growth periods (June to November) in an alpine grassland ecosystem. The random forest (RF) algorithm is employed to determine the optimum combinations of 38 spectral variables capable of capturing dynamic variations in forage N. The results show that (1) throughout the growth period, the red-edge first shifts toward longer wavelengths and then shifts toward shorter wavelengths, the amplitude (AMP) and absorption depth (AD) gradually decrease, and the absorption position (AP) changes slightly; (2) the importance of spectral variables for forage N estimation differs during the different growth periods; (3) the multivariate model achieves better results for the first four periods (June to October) than for the last period (when the grass is completely senesced) (V-R2: 0.58–0.68 versus 0.23); and (4) for the whole growth period (June to November), the prediction accuracy of the general N estimation model validated by the unknown growth period is lower than that validated by the unknown location (V-R2 is 0.28 and 0.55 for the validation strategies of Leave-Time-Out and Leave-Location-Out, respectively). This study demonstrates that the changes in the spectral features of the red wavelength (red-edge position, AMP and AD) are well coupled with the forage N content. Moreover, the development of a multivariate RF model for estimating alpine grasslands N content during different growth periods is promising for the improvement of both the stability and accuracy of the model.

2020 ◽  
Vol 12 (18) ◽  
pp. 2929
Author(s):  
Jinlong Gao ◽  
Jie Liu ◽  
Tiangang Liang ◽  
Mengjing Hou ◽  
Jing Ge ◽  
...  

Nondestructive and accurate estimating of the forage nitrogen–phosphorus (N:P) ratio is conducive to the real-time diagnosis of nutrient limitation and the formulation of a management scheme during the growth and development of forage. New-generation high-resolution remote sensors equipped with strategic red-edge wavebands offer opportunities and challenges for estimating and mapping forage N:P ratio in support of the sustainable utilization of alpine grassland resources. This study aims to detect the forage N:P ratio as an ecological indicator of grassland nutrient content by employing Sentinel-2 multispectral instrument (MSI) data and a random forest (RF) algorithm. The results showed that the estimation accuracy (R2) of the forage N:P ratio model established by combining the optimized spectral bands and vegetation indices (VIs) is 0.49 and 0.59 in the vigorous growth period (July) and the senescing period (November) of forage, respectively. Moreover, Sentinel-2 MSI B9 and B12 bands contributed greatly to the estimation of the forage N:P ratio, and the VIs (RECI2) constructed by B5 and B8A bands performed well in the estimation of the forage N:P ratio. Overall, it is promising to map the spatial distribution of the forage N:P ratio in alpine grassland using Sentinel-2 MSI data at regional scales. This study will be potentially beneficial in implementing precise positioning of vegetation nutrient deficiency and scientific fertilization management of grassland.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Author(s):  
Weitao Chen ◽  
Shenhai Ran ◽  
Canhui Wu ◽  
Bengt Jacobson

AbstractCo-simulation is widely used in the industry for the simulation of multidomain systems. Because the coupling variables cannot be communicated continuously, the co-simulation results can be unstable and inaccurate, especially when an explicit parallel approach is applied. To address this issue, new coupling methods to improve the stability and accuracy have been developed in recent years. However, the assessment of their performance is sometimes not straightforward or is even impossible owing to the case-dependent effect. The selection of the coupling method and its tuning cannot be performed before running the co-simulation, especially with a time-varying system.In this work, the co-simulation system is analyzed in the frequency domain as a sampled-data interconnection. Then a new coupling method based on the H-infinity synthesis is developed. The method intends to reconstruct the coupling variable by adding a compensator and smoother at the interface and to minimize the error from the sample-hold process. A convergence analysis in the frequency domain shows that the coupling error can be reduced in a wide frequency range, which implies good robustness. The new method is verified using two co-simulation cases. The first case is a dual mass–spring–damper system with random parameters and the second case is a co-simulation of a multibody dynamic (MBD) vehicle model and an electric power-assisted steering (EPAS) system model. Experimental results show that the method can improve the stability and accuracy, which enables a larger communication step to speed up the explicit parallel co-simulation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2098
Author(s):  
Heyi Wei ◽  
Wenhua Jiang ◽  
Xuejun Liu ◽  
Bo Huang

Knowledge of the sunshine requirements of landscape plants is important information for the adaptive selection and configuration of plants for urban greening, and is also a basic attribute of plant databases. In the existing studies, the light compensation point (LCP) and light saturation point (LSP) have been commonly used to indicate the shade tolerance for a specific plant; however, these values are difficult to adopt in practice because the landscape architect does not always know what range of solar radiation is the best for maintaining plant health, i.e., normal growth and reproduction. In this paper, to bridge the gap, we present a novel digital framework to predict the sunshine requirements of landscape plants. First, the research introduces the proposed framework, which is composed of a black-box model, solar radiation simulation, and a health standard system for plants. Then, the data fitting between solar radiation and plant growth response is used to obtain the value of solar radiation at different health levels. Finally, we adopt the LI-6400XT Portable Photosynthetic System (Li-Cor Inc., Lincoln, NE, USA) to verify the stability and accuracy of the digital framework through 15 landscape plant species of a residential area in the city of Wuhan, China, and also compared and analyzed the results of other researchers on the same plant species. The results show that the digital framework can robustly obtain the values of the healthy, sub-healthy, and unhealthy levels for the 15 landscape plant species. The purpose of this study is to provide an efficient forecasting tool for large-scale surveys of plant sunshine requirements. The proposed framework will be beneficial for the adaptive selection and configuration of urban plants and will facilitate the construction of landscape plant databases in future studies.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 333
Author(s):  
Jian Le ◽  
Hao Zhang ◽  
Cao Wang ◽  
Xingrui Li ◽  
Jiangfeng Zhu

To enhance the stability and accuracy of the digital-physical hybrid simulation system of a modular multilevel converter-based high voltage direct current (MMC-HVDC) system, this paper presents an improved power interface modeling algorithm based on ideal transformer method (ITM). By analyzing the stability condition of a hybrid simulation system based on the ITM model, the current of a so-called virtual resistance is added to the control signal of the controlled current source in the digital subsystem, and the stability of the hybrid simulation system with the improved power interface model is analyzed. The value of the virtual resistance is optimized by comprehensively considering system stability and simulation precision. A two-terminal bipolar MMC-HVDC simulation system based on the proposed power interface model is established. The comparisons of the simulation results verify that the proposed method can effectively improve the stability of the hybrid simulation system, and at the same time has the advantages of high simulation accuracy and easy implementation.


2012 ◽  
Vol 204-208 ◽  
pp. 2224-2229
Author(s):  
Yu En Huang ◽  
Chang Huan Kou ◽  
Li Chen ◽  
Chin Sheng Kao ◽  
Meng Wei Lai

Climate changes in recent years have caused a trend of increasing rainfall in Taiwan. In addition, the rivers of Taiwan flow down steep slopes with rapid currents, and the flow is extremely turbulent in particular segments of the rivers, causing pile scours that affect the stability of bridges in the area. Based on turbulent flow theory, this paper establishes an estimation model for the pier scour depth limit of suitable bridges crossing rivers in Taiwan, according to the characteristics of the stagnation point and separation point of fluid mechanics. A bridge in northern Taiwan is analyzed according to measurements, confirming that the channel scour formula suggested in this paper demonstrates sufficient accuracy. Additionally, lateral pushover analysis is performed on the bridge to understand the seismic durability of the bridge structure following a scour.


2017 ◽  
Vol 21 (3) ◽  
pp. 782-807 ◽  
Author(s):  
Yanli Wang ◽  
Shudao Zhang

AbstractWe present a numerical method to solve the Vlasov-Poisson-Fokker-Planck (VPFP) system using the NRxx method proposed in [4, 7, 9]. A globally hyperbolic moment system similar to that in [23] is derived. In this system, the Fokker-Planck (FP) operator term is reduced into the linear combination of the moment coefficients, which can be solved analytically under proper truncation. The non-splitting method, which can keep mass conservation and the balance law of the total momentum, is used to solve the whole system. A numerical problem for the VPFP system with an analytic solution is presented to indicate the spectral convergence with the moment number and the linear convergence with the grid size. Two more numerical experiments are tested to demonstrate the stability and accuracy of the NRxx method when applied to the VPFP system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Wang ◽  
Miao Liu ◽  
Youchao Chen ◽  
Tao Zeng ◽  
Xuyang Lu ◽  
...  

Both plant communities and soil microbes have been reported to be correlated with ecosystem multifunctionality (EMF) in terrestrial ecosystems. However, the process and mechanism of aboveground and belowground communities on different EMF patterns are not clear. In order to explore different response patterns and mechanisms of EMF, we divided EMF into low (<0) and high patterns (>0). We found that there were contrasting patterns of low and high EMF in the alpine grassland ecosystem on the Tibetan Plateau. Specifically, compared with low EMF, environmental factors showed higher sensitivity to high EMF. Soil properties are critical factors that mediate the impact of community functions on low EMF based on the change of partial correlation coefficients from 0 to 0.24. In addition, plant community functions and microbial biomass may mediate the shift of EMF from low to high patterns through the driving role of climate across the alpine grassland ecosystem. Our findings will be vital to clarify the mechanism for the stability properties of grassland communities and ecosystems under ongoing and future climate change.


Author(s):  
Ying-Xin Zhu ◽  
Hao-Ran Jin ◽  
◽  
◽  

The demand for fluency in human–computer interaction is on an increase globally; thus, the active localization of the speaker by the machine has become a problem worth exploring. Considering that the stability and accuracy of the single-mode localization method are low, while the multi-mode localization method can utilize the redundancy of information to improve accuracy and anti-interference, a speaker localization method based on voice and image multimodal fusion is proposed. First, the voice localization method based on time differences of arrival (TDOA) in a microphone array and the face detection method based on the AdaBoost algorithm are presented herein. Second, a multimodal fusion method based on spatiotemporal fusion of speech and image is proposed, and it uses a coordinate system converter and frame rate tracker. The proposed method was tested by positioning the speaker stand at 15 different points, and each point was tested 50 times. The experimental results demonstrate that there is a high accuracy when the speaker stands in front of the positioning system within a certain range.


Sign in / Sign up

Export Citation Format

Share Document