scholarly journals Cooperative UAV Scheme for Enhancing Video Transmission and Global Network Energy Efficiency

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4155 ◽  
Author(s):  
Pedro Cumino ◽  
Wellington Lobato Junior ◽  
Thais Tavares ◽  
Hugo Santos ◽  
Denis Rosário ◽  
...  

Collaboration between multiple Unmanned Aerial Vehicles (UAVs) to set up a Flying Ad Hoc Network (FANET) is a growing trend since future applications claim for more autonomous and rapid deployable systems. The user experience on watching videos transmitted over FANETs should always be satisfactory even under influence of topology changes caused by the energy consumption of UAVs. In addition, the FANET must keep the UAVs cooperating as much as possible during a mission. However, one of the main challenges in FANET is how to mitigate the impact of limited energy resources of UAVs on the FANET operation in order to monitor the environment for a long period of time. In this sense, UAV replacement is required in order to avoid the premature death of nodes, network disconnections, route failures, void areas, and low-quality video transmissions. In addition, decision-making must take into account energy consumption associated with UAV movements, since they are generally quite energy-intensive. This article proposes a cooperative UAV scheme for enhancing video transmission and global energy efficiency called VOEI. The main goal of VOEI is to maintain the video with QoE support while supporting the nodes with a good connectivity quality level and flying for a long period of time. Based on an Software Defined Network (SDN) paradigm, the VOEI assumes the existence of a centrailized controller node to compute reliable and energy-efficiency routes, as well as detects the appropriate moment for UAV replacement by considering global FANET context information to provide energy-efficiency operations. Based on simulation results, we conclude that VOEI can effectively mitigate the energy challenges of FANET, since it provides energy-efficiency operations, avoiding network death, route failure, and void area, as well as network partitioning compared to state-of-the-art algorithm. In addition, VOEI delivers videos with suitable Quality of Experience (QoE) to end-users at any time, which is not achieved by the state-of-the-art algorithm.

2014 ◽  
Vol 953-954 ◽  
pp. 890-895
Author(s):  
Hui Min Li ◽  
Cun Bin Li ◽  
Zhan Xin Ma

In recent years, with the rapid economic growth, the demand on the amount of energy in China is increasing. So the problem of how to improve the energy utilization efficiency and save energy consumption has to be tackled. The traditional CCR model and BCC model used in the study of provincial energy efficiency do not take the impact of technological progress into consideration. Therefore, the paper uses the generalized DEA method to research the energy utilization efficiency of China’s 29 provinces, that is, to evaluate and analyze the energy utilization efficiency by selecting the capital stock, employment and total energy consumption of China’s provinces as input factors and GDP, per capital GDP as output factors, and then draw tables showing each province’s change of average annual overall efficiency and the pure technology changes, and finally analyze the regularities underlying these changes.


2020 ◽  
Vol 12 (21) ◽  
pp. 8908
Author(s):  
Rubén Garrido-Yserte ◽  
María-Teresa Gallo-Rivera

Higher education institutions (HEIs) have a huge potential to save energy as they are significantly more energy-intensive in comparison with commercial offices and manufacturing premises. This paper provides an overview of the chief actions of sustainability and energy efficiency addressed by the University of Alcalá (Madrid, Spain). The policies implemented have shifted the University of Alcalá (UAH) to become the top-ranking university in Spain and one of the leading universities internationally on environmentally sustainable practices. The paper highlights two key elements. First, the actions adopted by the managerial teams, and second, the potential of public–private collaboration when considering different stakeholders. A descriptive study is developed through document analysis. The results show that energy consumption per user and energy consumption per area first fall and are then maintained, thereby contributing to meeting the objectives of the Spanish Government’s Action Plan for Energy Saving and Efficiency (2011–2020). Because of the research approach, the results cannot be generalized. However, the paper fulfils an identified need to study the impact of HEIs and their stakeholders on sustainable development through initiatives in saving energy on their campuses and highlights the role of HEIs as test laboratories for the introduction of innovations in this field (monitoring, sensing, and reporting, among others).


Author(s):  
Е. Sigarev ◽  
Y. Lobanov ◽  
А. Pohvalitiy

The results of calculation of energy efficiency of the variant of technology of converter smelting with preliminary heating of scrap metal in the unit due to burning of solid fuels in modern raw material conditions of the metallurgical enterprise of Ukraine are presented. A critical analysis of the variant of converter smelting technology with the use of preheating of an increased amount of scrap metal in the charge containing briquettes of steel chips in the unit, before pouring processing iron. According to the results of the calculation of the efficiency of use of different types of fuel used for preheating of scrap metal in the unit, the rational type and technology of its use in converter smelting are determined. A direct connection between the chemical composition of briquettes, the level of their preheating and the share in the metal charge on the energy efficiency of the converter process and their chemical heat content has been established. The nature of the temperature distribution in the volume of briquettes from steel shavings, which are a part of the metal charge, is taken into account when they are preheated by oxidation of coal with oxygen supplied through the nozzles of the standard lance. A method for calculating the change in energy consumption of scrap metal during its preheating, taking into account the content of elements in the briquettes and the level of heating. The energy consumption of the converter process with preheating of the metal charge increases in proportion to the level of contamination of briquettes from steel chips with non-metallic inclusions. According to the calculations when heating briquettes by 100—800 degrees in the converter, the increase in energy consumption of the converter process is from 60 to 630 MJ / t and from 445 to 1000 MJ/t for contamination of briquettes with non-metallic inclusions of 2.47 and 7.87 % by weight in accordance. With the reduction of briquette contamination, the efficiency of preheating of the metal charge increases. The share of the impact of the level of briquette contamination on the overall energy efficiency of the converter process is on average 0.3 % of the total energy savings of 1.91—1.92 GJ / t, which is achieved by increasing the share of scrap metal in the charge.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 6
Author(s):  
Patrick Carré

In a context where the search for naturalness, the need to reduce the carbon footprint and the development of a decentralized crushing sector are intensifying, mechanical extraction is a technology that is regaining major importance for the industry. The performance of this technique remains far below what is desirable, while the understanding of the main phenomena involved in screw presses remains insufficient. This article, after a brief presentation of the state of the art of this discipline, presents a new model centered on the notions of pressure generation and plasticity. According to this approach, plasticity can account for parameters such as the water and oil content of oilseeds, their temperature, and their possible dehulling. Plasticity in turn would explain both the compressibility of the cake and its ability to resist the thrust of the screws, and consequently to generate pressure or to creep or flow backward depending on the geometry of the screw and the cage. The model must also incorporate the notions of compression velocity, friction, and the complexity of the interactions between these parameters and the impact of the succession of screw segments and cone rings. It has been built on observation and experience and gives an understanding of the need to work simultaneously on the conditioning and geometry of the presses to achieve improved performance in terms of energy, efficiency, and reduction of the temperatures experienced by the proteins and oils


Author(s):  
Aizat Faiz Ramli ◽  
Muhammad Ikram Shabry ◽  
Mohd Azlan Abu ◽  
Hafiz Basarudin

LoRaWAN is one of the leading Low power wide area network (LPWAN) LPWAN technologies that compete for the formation of big scale Internet of Things (IoT). It uses LoRa protocol to achieve long range, low bit rate and low power communication. Large scale LoRaWAN based IoT deployments can consist of battery powered sensor nodes. Therefore, the energy consumption and efficiency of these nodes are crucial factors that can influence the lifetime of the network. However, there is no coherent experimental based research which identifies the factors that influence the LoRa energy efficiency at various nodes density. In this paper, results on measuring the packet delivery ratio, packet loss, data rate and energy consumption ratio ECR to gauge the energy efficiency of LoRa devices at various nodes density are presented. It is shown that the ECR of LoRa is inversely proportional to the nodes density and that the ECR of the network is smaller at higher traffic indicating better network energy efficiency. It is also demonstrated that at high node density, spreading factor SF of 7 and 9 can improve the energy efficiency of the network by 5 and 3 times, respectively, compare to SF 11.


Author(s):  
Gheorghe Grigoraș ◽  
Bogdan-Constantin Neagu

The paper presents a new vision on the energy consumption management in the case of the Small and Medium Enterprises (SMEs), integrated into an advanced decision support platform, with technical and economic benefits on increasing the energy efficiency, which contains modules for database management, profiling, forecasting, and production scheduling. Inside each module, Artificial Intelligence and Data Mining techniques were proposed to remove the uncertainties regarding the dynamic of technological flows. Thus, the data management module includes the Data Mining techniques, that extract the technical details on the energy consumption needed in the development of production scheduling strategies, the profiling module uses an original approach based on clustering techniques to determine the typical energy consumption profiles required in the optimal planning of the activities, the forecasting module contains a new approach based on an expert system to forecast the total energy consumption of the SMEs, and production scheduling module integrates a heuristic optimization method to obtain the optimal solutions in flattening the energy consumption profile. The testing was done for a small enterprise from Romania, belonging to the domain of trade and repair of vehicles. The obtained results highlighted the advantages of the proposed decision support platform on the decrease in the intensity of energy consumption per unit of product, reduction of the purchase costs, and modification of the impact whom the energy bills have on the operational costs.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4399 ◽  
Author(s):  
César Benavente-Peces

Energy efficiency is one of the most relevant issues that the scientific community, and society in general, must face in the next years. Furthermore, higher energy efficiencies will contribute to worldwide sustainability. Buildings are responsible for 40% of the overall consumed energy. Smart Grids and Smart Buildings are playing an essential role in the definition of the next generation of sustainable Smart Cities. The main goal is reducing the impact of energy consumption on the environment as much as possible. This paper focuses on information communication technologies (ICTs) and techniques, their key characteristics and contribution to obtain higher energy efficiencies in smart buildings. Given that electrical energy is the most used, the investigation mainly centres on this energy. This paper also pays attention to green energies and energy harvesting due to their contribution to energy efficiency by providing additional clean energy. The main contribution of this investigation is pointing out the most relevant existing and emerging ICT technologies and techniques which can be used to optimize the energy efficiency of Smart Buildings. The research puts special attention on available, novel and emerging sensors, communication technologies and standards, intelligence techniques and algorithms, green energies and energy harvesting. All of them enable high-performance intelligent systems to optimize energy consumption and occupants’ comfort. Furthermore, it remarks on the most suitable technologies and techniques, their main features and their applications in Smart Buildings.


Author(s):  
Yongqi Feng ◽  
Ren Liu ◽  
Yung-ho Chiu ◽  
Tzu-Han Chang

Environment pollution was closely related to human health. The energy consumption is one of the important sources of environmental pollution in the development of economy. This paper used undesirable two-stage meta-frontier DDF (distance difference function) data envelopment analysis model to explore the impact of environment pollutants from energy consumption on the mortality of children and the aged, survival rate of 65 years old and health expenditure efficiency in 27 high income countries, 21 upper middle income countries, and 16 lower middle income countries from 2010 to 2014. High income countries had higher efficiency of energy and health than middle income countries in general. But whether in high income or middle income countries, the efficiency of non-renewable energy is higher than renewable energy. There was much room for both high income countries and middle income countries to improve renewable energy efficiency. Besides, middle income countries need to improve the efficiency of non-renewable energy and reduce pollutant emissions per unit of GDP. In terms of health efficiency, upper middle income countries performed worse than lower income countries. This phenomenon might indicate there was a U-shaped relationship between health efficiency and income level. Upper income countries should pay more attention to the environmental and health problems and cross the U-shaped turning point. The contribution of this article was to consider the heterogeneous performance of energy efficiency, environmental efficiency, and health efficiency under the influence of income level differences, and found that there might be a U-shaped relationship between health efficiency and income level.


2020 ◽  
Vol 10 (10) ◽  
pp. 3589 ◽  
Author(s):  
Mahsa Nazeriye ◽  
Abdorrahman Haeri ◽  
Francisco Martínez-Álvarez

Human living could become very difficult due to a lack of energy. The household sector plays a significant role in energy consumption. Trying to optimize and achieve efficient energy consumption can lead to large-scale energy savings. The aim of this paper is to identify the equipment and property affecting energy efficiency and consumption in residential homes. For this purpose, a hybrid data-mining approach based on K-means algorithms and decision trees is presented. To analyze the approach, data is modeled once using the approach and then without it. A data set of residential homes of England and Wales is arranged in low, medium and high consumption clusters. The C5.0 algorithm is run on each cluster to extract factors affecting energy efficiency. The comparison of the modeling results, and also their accuracy, prove that the approach employed has the ability to extract the findings with greater accuracy and detail than in other cases. The installation of boilers, using cavity walls, and installing insulation could improve energy efficiency. Old homes and the usage of economy 7 electricity have an unfavorable effect on energy efficiency, but the approach shows that each cluster behaved differently in these factors related to energy efficiency and has unique results.


2019 ◽  
Vol 111 ◽  
pp. 03028
Author(s):  
Nazanin Moazzen ◽  
Mustafa Erkan Karagüler ◽  
Touraj Ashrafian

Energy efficiency of existing buildings is a concept to manage and restrain the growth in energy consumption and one of the crucial issues due to the magnitude of the sector. Educational buildings are in charge of about 15% of the total energy consumption of the non-residential building sector. However, not only operational but also embodied energy of a building should be reduced to get the overall benefits of energy efficiency, where, using energy efficient architectural measures and low emitting materials during every retrofit action can be a logical step. The majority of buildings in Turkey and EU was built earlier than the development of the energy efficiency in the construction sector, hence, without energy retrofit, consume an enormous amount of energy that can be averted significantly by the implementation of some even not advanced retrofit measures. Furthermore, demolishing of a building to construct a new one is not a rational approach concerning cost, time and environmental pollution. The study has been focused on the impact assessment of the various architectural scenarios of energy efficiency upgrading on the Life Cycle Energy Consumption (LCEC) and Life Cycle CO2 (LCCO2) emission. Within the scope of the study, a primary school building is selected to be analysed. Through analysis, the total embodied and operational energy use and CO2 emission regarding the life cycle phase of the building is quantitatively defined and investigated in the framework of life cycle inventory. The paper concentrates on the operation and embodied energy consumption arising from the application of a variety of measures on the building envelope. An educational building with low LCCO2 emissions and LCEC in Turkey is proposed. To exemplify the approach, contributions are applied to a case study in Istanbul as a representative school building. The primary energy consumption of the case study building is calculated with a dynamic simulation tool, EnergyPlus. Afterwards, a sort of architectural energy efficient measures is implemented in the envelope while the lighting and mechanical systems remain constant. The energy used in the production and transportation of materials, which are the significant parts of the embodied energy, are taken into account as well.


Sign in / Sign up

Export Citation Format

Share Document