scholarly journals An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2087 ◽  
Author(s):  
Jun Zhu ◽  
Ziwu Pan ◽  
Hang Wang ◽  
Peijie Huang ◽  
Jiulin Sun ◽  
...  

As tea is an important economic crop in many regions, efficient and accurate methods for remotely identifying tea plantations are essential for the implementation of sustainable tea practices and for periodic monitoring. In this study, we developed and tested a method for tea plantation identification based on multi-temporal Sentinel-2 images and a multi-feature Random Forest (RF) algorithm. We used phenological patterns of tea cultivation in China’s Shihe District (such as the multiple annual growing, harvest, and pruning stages) to extracted multi-temporal Sentinel-2 MSI bands, their derived first spectral derivative, NDVI and textures, and topographic features. We then assessed feature importance using RF analysis; the optimal combination of features was used as the input variable for RF classification to extract tea plantations in the study area. A comparison of our results with those achieved using the Support Vector Machine method and statistical data from local government departments showed that our method had a higher producer’s accuracy (96.57%) and user’s accuracy (96.02%). These results demonstrate that: (1) multi-temporal and multi-feature classification can improve the accuracy of tea plantation recognition, (2) RF classification feature importance analysis can effectively reduce feature dimensions and improve classification efficiency, and (3) the combination of multi-temporal Sentinel-2 images and the RF algorithm improves our ability to identify and monitor tea plantations.

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1784
Author(s):  
Shih-Chieh Chang ◽  
Chan-Lin Chu ◽  
Chih-Kuang Chen ◽  
Hsiang-Ning Chang ◽  
Alice M. K. Wong ◽  
...  

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 746 ◽  
Author(s):  
Johannes Schumacher ◽  
Margret Rattay ◽  
Melanie Kirchhöfer ◽  
Petra Adler ◽  
Gerald Kändler

Multi-temporal Sentinel 2 optical images and 3D photogrammetric point clouds can be combined to enhance the accuracy of timber volume models on large spatial scale. Information on the proportion of broadleaf and conifer trees improves timber volume models obtained from 3D photogrammetric point clouds. However, the broadleaf-conifer information cannot be obtained from photogrammetric point clouds alone. Furthermore, spectral information of aerial images is too inconsistent to be used for automatic broadleaf-conifer classification over larger areas. In this study we combined multi-temporal Sentinel 2 optical satellite images, 3D photogrammetric point clouds from digital aerial stereo photographs, and forest inventory plots representing an area of 35,751 km2 in south-west Germany for (1) modelling the percentage of broadleaf tree volume (BL%) using Sentinel 2 time series and (2) modelling timber volume per hectare using 3D photogrammetric point clouds. Forest inventory plots were surveyed in the same years and regions as stereo photographs were acquired (2013–2017), resulting in 11,554 plots. Sentinel 2 images from 2016 and 2017 were corrected for topographic and atmospheric influences and combined with the same forest inventory plots. Spectral variables from corrected multi-temporal Sentinel 2 images were calculated, and Support Vector Machine (SVM) regressions were fitted for each Sentinel 2 scene estimating the BL% for corresponding inventory plots. Variables from the photogrammetric point clouds were calculated for each inventory plot and a non-linear regression model predicting timber volume per hectare was fitted. Each SVM regression and the timber volume model were evaluated using ten-fold cross-validation (CV). The SVM regression models estimating the BL% per Sentinel 2 scene achieved overall accuracies of 68%–75% and a Root Mean Squared Error (RMSE) of 21.5–26.1. The timber volume model showed a RMSE% of 31.7%, a mean bias of 0.2%, and a pseudo-R2 of 0.64. Application of the SVM regressions on Sentinel 2 scenes covering the state of Baden-Württemberg resulted in predictions of broadleaf tree percentages for the entire state. These predicted values were used as additional predictor in the timber volume model, allowing for predictions of timber volume for the same area. Spatially high-resolution information about growing stock is of great practical relevance for forest management planning, especially when the timber volume of a smaller unit is of interest, for example of a forest stand or a forest district where not enough terrestrial inventory plots are available to make reliable estimations. Here, predictions from remote-sensing based models can be used. Furthermore, information about broadleaf and conifer trees improves timber volume models and reduces model errors and, thereby, prediction uncertainties.


2020 ◽  
Vol 12 (9) ◽  
pp. 1449
Author(s):  
Elahe Akbari ◽  
Ali Darvishi Boloorani ◽  
Najmeh Neysani Samany ◽  
Saeid Hamzeh ◽  
Saeid Soufizadeh ◽  
...  

Timely and accurate information on crop mapping and monitoring is necessary for agricultural resources management. Accordingly, the applicability of the proposed classification-feature selection ensemble procedure with different feature sets for crop mapping is investigated. Here, we produced various feature sets including spectral bands, spectral indices, variation of spectral index, texture, and combinations of features to map different types of crops. By using various feature sets and the random forest (RF) classifier, the crop maps were created. In aiming to determine the most relevant and distinctive features, the particle swarm optimization (PSO) and RF-variable importance measure feature selection methods were examined. The classification-feature selection ensemble procedure was adapted to combine the outputs of different feature sets from the better feature selection method using majority votes. Multi-temporal Sentinel-2 data has been used in Ghale-Nou county of Tehran, Iran. The performance of RF was efficient in crop mapping especially by spectral bands and texture in combination with other feature sets. Our results showed that the PSO-based feature selection leads to a more accurate classification than the RF-variable importance measure, in almost all feature sets for all crop types. The RF classifier-PSO ensemble procedure for crop mapping outperformed the RF classifier in each feature set with regard to the class-wise and overall accuracies (OA) (of about 2.7–7.4% increases in OA and 0.48–3.68% (silage maize), 0–1.61% (rice), 2.82–15.43% (alfalfa), and 10.96–41.13% (vegetables) improvement in F-scores for all feature sets). The proposed method could mainly be useful to differentiate between heterogeneous crop fields (e.g., vegetables in this study) due to their more obtained omission/commission errors reduction.


2020 ◽  
Vol 10 (3) ◽  
pp. 934 ◽  
Author(s):  
Eufemia Lella ◽  
Angela Lombardi ◽  
Nicola Amoroso ◽  
Domenico Diacono ◽  
Tommaso Maggipinto ◽  
...  

Signal processing and machine learning techniques are changing the clinical practice based on medical imaging from many perspectives. A major topic is related to (i) the development of computer aided diagnosis systems to provide clinicians with novel, non-invasive and low-cost support-tools, and (ii) to the development of new methodologies for the analysis of biomedical data for finding new disease biomarkers. Advancements have been recently achieved in the context of Alzheimer’s disease (AD) diagnosis through the use of diffusion weighted imaging (DWI) data. When combined with tractography algorithms, this imaging modality enables the reconstruction of the physical connections of the brain that can be subsequently investigated through a complex network-based approach. A graph metric particularly suited to describe the disruption of the brain connectivity due to AD is communicability. In this work, we develop a machine learning framework for the classification and feature importance analysis of AD based on communicability at the whole brain level. We fairly compare the performance of three state-of-the-art classification models, namely support vector machines, random forests and artificial neural networks, on the connectivity networks of a balanced cohort of healthy control subjects and AD patients from the ADNI database. Moreover, we clinically validate the information content of the communicability metric by performing a feature importance analysis. Both performance comparison and feature importance analysis provide evidence of the robustness of the method. The results obtained confirm that the whole brain structural communicability alterations due to AD are a valuable biomarker for the characterization and investigation of pathological conditions.


2020 ◽  
Vol 12 (17) ◽  
pp. 2696 ◽  
Author(s):  
Martyna Wakulińska ◽  
Adriana Marcinkowska-Ochtyra

The electromagnetic spectrum registered via satellite remote sensing methods became a popular data source that can enrich traditional methods of vegetation monitoring. The European Space Agency Sentinel-2 mission, thanks to its spatial (10–20 m) and spectral resolution (12 spectral bands registered in visible-, near-, and mid-infrared spectrum) and primarily its short revisit time (5 days), helps to provide reliable and accurate material for the identification of mountain vegetation. Using the support vector machines (SVM) algorithm and reference data (botanical map of non-forest vegetation, field survey data, and high spatial resolution images) it was possible to classify eight vegetation types of Giant Mountains: bogs and fens, deciduous shrub vegetation, forests, grasslands, heathlands, subalpine tall forbs, subalpine dwarf pine scrubs, and rock and scree vegetation. Additional variables such as principal component analysis (PCA) bands and selected vegetation indices were included in the best classified dataset. The results of the iterative classification, repeated 100 times, were assessed as approximately 80% median overall accuracy (OA) based on multi-temporal datasets composed of images acquired through the vegetation growing season (from late spring to early autumn 2018), better than using a single-date scene (70%–72% OA). Additional variables did not significantly improve the results, showing the importance of spectral and temporal information themselves. Our study confirms the possibility of fully available data for the identification of mountain vegetation for management purposes and protection within national parks.


Author(s):  
Joni Salminen ◽  
Maximilian Hopf ◽  
Shammur A. Chowdhury ◽  
Soon-gyo Jung ◽  
Hind Almerekhi ◽  
...  

AbstractThe proliferation of social media enables people to express their opinions widely online. However, at the same time, this has resulted in the emergence of conflict and hate, making online environments uninviting for users. Although researchers have found that hate is a problem across multiple platforms, there is a lack of models for online hate detection using multi-platform data. To address this research gap, we collect a total of 197,566 comments from four platforms: YouTube, Reddit, Wikipedia, and Twitter, with 80% of the comments labeled as non-hateful and the remaining 20% labeled as hateful. We then experiment with several classification algorithms (Logistic Regression, Naïve Bayes, Support Vector Machines, XGBoost, and Neural Networks) and feature representations (Bag-of-Words, TF-IDF, Word2Vec, BERT, and their combination). While all the models significantly outperform the keyword-based baseline classifier, XGBoost using all features performs the best (F1 = 0.92). Feature importance analysis indicates that BERT features are the most impactful for the predictions. Findings support the generalizability of the best model, as the platform-specific results from Twitter and Wikipedia are comparable to their respective source papers. We make our code publicly available for application in real software systems as well as for further development by online hate researchers.


2020 ◽  
Vol 12 (21) ◽  
pp. 3660
Author(s):  
Darío Domingo ◽  
Juan de la Riva ◽  
María Teresa Lamelas ◽  
Alberto García-Martín ◽  
Paloma Ibarra ◽  
...  

Mediterranean forests are recurrently affected by fire. The recurrence of fire in such environments and the number and severity of previous fire events are directly related to fire risk. Fuel type classification is crucial for estimating ignition and fire propagation for sustainable forest management of these wildfire prone environments. The aim of this study is to classify fuel types according to Prometheus classification using low-density Airborne Laser Scanner (ALS) data, Sentinel 2 data, and 136 field plots used as ground-truth. The study encompassed three different Mediterranean forests dominated by pines (Pinus halepensis, P. pinaster y P. nigra), oaks (Quercus ilex) and quercus (Q. faginea) in areas affected by wildfires in 1994 and their surroundings. Two metric selection approaches and two non-parametric classification methods with variants were compared to classify fuel types. The best-fitted classification model was obtained using Support Vector Machine method with radial kernel. The model includes three ALS and one Sentinel-2 metrics: the 25th percentile of returns height, the percentage of all returns above mean, rumple structural diversity index and NDVI. The overall accuracy of the model after validation was 59%. The combination of data from active and passive remote sensing sensors as well as the use of adapted structural diversity indices derived from ALS data improved accuracy classification. This approach demonstrates its value for mapping fuel type spatial patterns at a regional scale under different heterogeneous and topographically complex Mediterranean forests.


2019 ◽  
Vol 10 (1) ◽  
pp. 238 ◽  
Author(s):  
Vittorio Mazzia ◽  
Aleem Khaliq ◽  
Marcello Chiaberge

Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks.


Sign in / Sign up

Export Citation Format

Share Document