scholarly journals Implementation of Radiating Elements for Radiofrequency Front-Ends by Screen-Printing Techniques for Internet of Things Applications

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3626 ◽  
Author(s):  
Imanol Picallo ◽  
Hicham Klaina ◽  
Peio Lopez-Iturri ◽  
Aitor Sánchez ◽  
Leire Méndez-Giménez ◽  
...  

The advent of the Internet of Things (IoT) has led to embedding wireless transceivers into a wide range of devices, in order to implement context-aware scenarios, in which a massive amount of transceivers is foreseen. In this framework, cost-effective electronic and Radio Frequency (RF) front-end integration is desirable, in order to enable straightforward inclusion of communication capabilities within objects and devices in general. In this work, flexible antenna prototypes, based on screen-printing techniques, with conductive inks on flexible low-cost plastic substrates is proposed. Different parameters such as substrate/ink characteristics are considered, as well as variations in fabrication process or substrate angular deflection in device performance. Simulation and measurement results are presented, as well as system validation results in a real test environment in wireless sensor network communications. The results show the feasibility of using screen-printing antenna elements on flexible low-cost substrates, which can be embedded in a wide array of IoT scenarios.

2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


2020 ◽  
Vol 14 (4) ◽  
pp. 113-133
Author(s):  
Mary Shamala L. ◽  
Zayaraz G. ◽  
Vivekanandan K. ◽  
Vijayalakshmi V.

Internet of things (IoT) is a global network of uniquely addressable interconnected things, based on standard communication protocols. As the number of devices connected to the IoT escalates, they are becoming a likely target for hackers. Also, the limited resources of IoT devices makes the security on top of the actual functionality of the device. Therefore, the cryptographic algorithm for such devices has to be devised as small as possible. To tackle the resource constrained nature of IoT devices, this article presents a lightweight cryptography algorithm based on a single permutation and iterated Even-Mansour construction. The proposed algorithm is implemented in low cost microcontrollers, thus making it suitable for a wide range of IoT nodes.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Charmet ◽  
Rodrigues ◽  
Yildirim ◽  
Challa ◽  
Roberts ◽  
...  

Microsystems are key enabling technologies, with applications found in almost every industrial field, including in vitro diagnostic, energy harvesting, automotive, telecommunication, drug screening, etc. Microsystems, such as microsensors and actuators, are typically made up of components below 1000 microns in size that can be manufactured at low unit cost through mass-production. Yet, their development for commercial or educational purposes has typically been limited to specialized laboratories in upper-income countries due to the initial investment costs associated with the microfabrication equipment and processes. However, recent technological advances have enabled the development of low-cost microfabrication tools. In this paper, we describe a range of low-cost approaches and equipment (below £1000), developed or adapted and implemented in our laboratories. We describe processes including photolithography, micromilling, 3D printing, xurography and screen-printing used for the microfabrication of structural and functional materials. The processes that can be used to shape a range of materials with sub-millimetre feature sizes are demonstrated here in the context of lab-on-chips, but they can be adapted for other applications. We anticipate that this paper, which will enable researchers to build a low-cost microfabrication toolbox in a wide range of settings, will spark a new interest in microsystems.


2020 ◽  
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Marco Severin

&lt;p&gt;The Global Navigation Satellite Systems (GNSS) provide a globally extended dataset of primordial importance for a wide range of applications, such as crustal deformation, topographic measurements, or near surface processes studies. However, the high costs of GNSS receivers and the supporting software can represent a strong limitation for the applicability to landslide monitoring. Low-cost tools and techniques are strongly required to face the plausible risk of losing the equipment during a landslide event.&lt;/p&gt;&lt;p&gt;Centro di Ricerche Sismologiche (CRS) of Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS in collaboration with SoluTOP, in the last years, has developed a cost-effective GNSS device, called LZER0, both for post-processing and real-time applications. The aim is to satisfy the needs of both scientific and professional communities which require low-cost equipment to increase and improve the measurements on structures at risk, such as landslides or buildings, without losing precision.&lt;/p&gt;&lt;p&gt;The landslide monitoring system implements single-frequency GNSS devices and open source software packages for GNSS positioning, dialoguing through Linux shell scripts. Furthermore a front-end web page has been developed to show real-time tracks. The system allows measuring real-time surface displacements with a centimetre precision and with a cost ten times minor than a standard RTK GPS operational system.&lt;/p&gt;&lt;p&gt;This monitoring system has been tested and now applied to two landslides in NE- Italy: one near Tolmezzo municipality and one near Brugnera village. Part of the device development has been included inside the project CLARA 'CLoud plAtform and smart underground imaging for natural Risk Assessment' funded by the Italian Ministry of Education, University and Research (MIUR).&lt;/p&gt;


2019 ◽  
Vol 4 (5) ◽  
pp. 102-108
Author(s):  
Moses Odiagbe ◽  
Emmanuel Majeyibo Eronu ◽  
Farouq E. Shaibu

The low cost effective wireless sensor network that The low cost effective wireless sensor network that allows for embedded system to monitor and control virtually any space and environment and to form the so called Internet of Things or Internet of Everything. The research work is intended to address a general problem associated with effective water utilization management, among others is the issue of water leakages, there is the need to effectively detect cases of leakages and address them appropriately. However, the sensitivity of the flow rate sensors used poses a number of challenges, hence the need to setup an appropriate calibration scheme that will allows for the flow rate sensor, effective adoption and usage ,isolating false alarm due to deficiencies associated with operation of the flow rate sensor as well as detecting leakages  . A frame work build around a flow rate sensor, solenoid valve, a microcontroller equipped with internet connectivity and a log in service monitoring and control platform on the cloud is used. Several simulated tests were carried out to explore a number of leakage scenarios. Based on the analysed data obtained overtime, appropriate algorithms were developed to allow for quick detection, remote monitoring and control of deduced cases of leakages. The work has significantly addressed the challenges poses to the effect leakages with the adopted framework.


Road Safety is the most crucial aspect in this modern world as the reckless use of the developed technology i.e. vehicles, is leading to human loss. Safety concerns while driving is of utmost importance in our daily lives. It might lead to the loss of lives of even innocent people and loss of property. The evolution of the Internet of Things (IoT) and the continuing increase in the number of sensors connected to the Internet has led to development of various application in our day to day life. Thus, automation in road safety using IoT can help to reduction as well as prevention of accidents. Accuracy is important when it comes to road safety and one must always strive to achieve the highest accuracy, provided there is no trade off’ with inexcusable time. Most of the road accidents are caused due to drowsiness or drunk driving. This paper deals with the design and testing of drunk and sleep-deprived driver detection device. This paper presents a low-cost effective method for drowsiness detection and proposes a method to detect whether the driver is drunk or not. Finally, it lays off a way to communicate with emergency help services. It deals with the design and testing of drunk and drowsy driver detection device.


Ingeniería ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 70 ◽  
Author(s):  
Edwin Blasnilo Rua Ramirez ◽  
Fernando Jimenez Diaz ◽  
German Andres Gutierrez Arias ◽  
Nelson Iván Villamizar

Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs.Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme.Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms.Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.


2021 ◽  
Author(s):  
Grishma Khadka ◽  
Biplob Ray ◽  
Jinho Choi ◽  
Nemai Karmakar

<div>This paper has proposed detection and physical layer security provision for printed sensory tag systems for internet of things (IoT) applications. The printed sensory tags can be a very cost-effective way to speed up the proliferation of the intelligent world of IoT. The printed Radio Frequency Identification (RFID) of a sensory tag is chipless with the fully printable feature, non-line-of-sight reading, low cost, and robustness to the environment. The detection and adoption of security features for such tags in a robust environment are still challenging. This paper initially presents a robust technology for detecting tags using both the amplitude and phase information of the frequency signature. After successfully identifying tag IDs, the paper presents novel physical layer security using a deep learning model to prevent the cloning of tags. Our experiment shows that the proposed system can detect and identify the unique physical attributes of the tag and isolate the clone tag from the genuine tag. It is believed that such real-time and precise detection and security features bring this technology closer to commercialisation for IoT applications.</div>


Author(s):  
Daniel B. Hess ◽  
Brian D. Taylor ◽  
Allison C. Yoh

Bus rapid transit (BRT) is growing rapidly in popularity because it is viewed widely as an efficient and effective means to improve both transit service and patronage. This paper argues that two distinct views of BRT are emerging: ( a) BRT as a new form of high-speed, rubber-tired, rail-like rapid transit and ( b) BRT as a cost-effective way to upgrade both the quality and image of traditional fixed-route bus service. These two views carry different price tags because the cost of planning, constructing, and operating BRT depends on the complexity of new service features and on rises for BRT that offer service characteristics approaching those of light rail. This study fills a gap in the literature on the costs of BRT by examining in detail component costs–-actual costs for recently implemented services and projected costs for planned new services–-for a sample of BRT systems in North American cities. The study examined BRT costs of 14 planned and recently opened BRT systems to determine how the wide range of BRT service and technology configurations affect costs. The study found that although some of the most successful and popular new BRT systems are high-quality services operating in mixed traffic and implemented at relatively low cost, most BRT projects on the drawing boards are more elaborate, more expensive systems than many currently in service. Most new BRT projects emphasize elaborate LRT-type improvements to lines and stations in one or a few corridors rather than less splashy improvements (such as next-bus monitors, signal preemption, queue-jump lanes, and so forth) affecting more lines and modes in local transit networks. Among the 14 systems examined here, most could be characterized as light rail lite.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1719 ◽  
Author(s):  
Sanja P. Kojic ◽  
Goran M. Stojanovic ◽  
Vasa Radonic

Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology—a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young’s modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique.


Sign in / Sign up

Export Citation Format

Share Document