scholarly journals Using a Scintillation Detector to Detect Partial Discharges

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4936 ◽  
Author(s):  
Łukasz Nagi ◽  
Michał Kozioł ◽  
Michał Kunicki ◽  
Daria Wotzka

This article presents the possibility of using a scintillation detector to detect partial discharges (PD) and presents the results of multi-variant studies of high-energy ionizing generated by PD in air. Based on the achieved results, it was stated that despite a high sensitivity of the applied detector, the accompanying electromagnetic radiation from the visible light, UV, and high-energy ionizing radiation can be recorded by both spectroscopes and a system commonly used to detect radiation. It is also important that the scintillation detector identifies a specific location where dangerous electrical discharges and where the E-M radiation energy that accompanies PD are generated. This provides a quick and non-invasive way to detect damage in insulation at an early stage when it is not visible from the outside. In places where different radiation detectors are often used due to safety regulations, such as power plants or nuclear laboratories, it is also possible to use a scintillation detector to identify that the recorded radiation comes from damaged insulation and is not the result of a failure.

Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 376 ◽  
Author(s):  
Luigi Montalto ◽  
Pier Natali ◽  
Lorenzo Scalise ◽  
Nicola Paone ◽  
Fabrizio Davì ◽  
...  

Nowadays, radiation detectors based on scintillating crystals are used in many different fields of science like medicine, aerospace, high-energy physics, and security. The scintillating crystals are the core elements of these devices; by converting high-energy radiation into visible photons, they produce optical signals that can be detected and analyzed. Structural and surface conditions, defects, and residual stress states play a crucial role in their operating performance in terms of light production, transport, and extraction. Industrial production of such crystalline materials is a complex process that requires sensing, in-line and off-line, for material characterization and process control to properly tune the production parameters. Indeed, the scintillators’ quality must be accurately assessed during their manufacture in order to prevent malfunction and failures at each level of the chain, optimizing the production and utilization costs. This paper presents an overview of the techniques used, at various stages, across the crystal production process, to assess the quality and structural condition of anisotropic scintillating crystals. Different inspection techniques (XRD, SEM, EDX, and TEM) and the non-invasive photoelasticity-based methods for residual stress detection, such as laser conoscopy and sphenoscopy, are presented. The use of XRD, SEM, EDX, and TEM analytical methods offers detailed structural and morphological information. Conoscopy and sphenoscopy offer the advantages of fast and non-invasive measurement suitable for the inspection of the whole crystal quality. These techniques, based on different measurement methods and models, provide different information that can be cross-correlated to obtain a complete characterization of the scintillating crystals. Inspection methods will be analyzed and compared to the present state of the art.


2021 ◽  
Author(s):  
Eva Hulstaert ◽  
Annelien Morlion ◽  
Justine Nuytens ◽  
Giovanni Ponti ◽  
Monia Maccaferri ◽  
...  

A diagnostic non-invasive biomarker test for prostate cancer at an early stage, with high sensitivity and specificity, would improve diagnostic decision making. Extracellular RNAs present in seminal plasma might contain biomarker potential for the accurate detection of clinically significant prostate cancer. So far, the extracellular messenger RNA (mRNA) profile of seminal plasma has not been interrogated for its biomarker potential in the context of prostate cancer. Here, we investigate the mRNA transcriptome in seminal plasma samples obtained from prostate cancer patients (n=25), patients with benign prostate hyperplasia (n=26) and individuals without prostatic disease (n=6). Seminal plasma harbors a complex mRNA repertoire that reflects prostate as its tissue of origin. The endogenous RNA content is higher in the prostate cancer samples compared to the control samples. Prostate cancer antigen 3 (PCA3), a long non-coding RNA with prostate cancer-specific overexpression, and ATP-binding cassette transporter 1 (ABCA1), known to be involved in the prostate cancer pathogenesis, were more abundant in the prostate cancer group. In addition, twelve high confidence fusion transcripts could be detected in prostate cancer samples, including the bona-fide prostate cancer fusion transcript TMPRSS2-ERG. Our findings provide proof-of-principle that the extracellular transcriptome of seminal plasma can reveal information of an underlying prostate cancer.


2021 ◽  
Vol 22 (3) ◽  
pp. 1007
Author(s):  
Jaehoon Lee ◽  
Hee Seung Lee ◽  
Soo Been Park ◽  
Chanyang Kim ◽  
Kahee Kim ◽  
...  

Pancreatic cancer (PC) is difficult to detect in the early stages; thus, identifying specific and sensitive biomarkers for PC diagnosis is crucial, especially in the case of early-stage tumors. Circulating microRNAs are promising non-invasive biomarkers. Therefore, we aimed to identify non-invasive miRNA biomarkers and build a model for PC diagnosis. For the training model, blood serum samples from 63 PC patients and 63 control subjects were used. We selected 39 miRNA markers using a smoothly clipped absolute deviation-based penalized support vector machine and built a PC diagnosis model. From the double cross-validation, the average test AUC was 0.98. We validated the diagnosis model using independent samples from 25 PC patients and 81 patients with intrahepatic cholangiocarcinoma (ICC) and compared the results with those obtained from the diagnosis using carbohydrate antigen 19-9. For the markers miR-155-5p, miR-4284, miR-346, miR-7145-5p, miR-5100, miR-661, miR-22-3p, miR-4486, let-7b-5p, and miR-4703-5p, we conducted quantitative reverse transcription PCR using samples from 17 independent PC patients, 8 ICC patients, and 8 healthy individuals. Differential expression was observed in samples from PC patients. The diagnosis model based on the identified markers showed high sensitivity and specificity for PC detection and is potentially useful for early PC diagnosis.


1997 ◽  
Vol 487 ◽  
Author(s):  
N. Kishimoto ◽  
H. Amekura ◽  
K. Kono ◽  
C. G. Lee

AbstractHigh-energy particles incident to a semiconductor sensitively produce electron-hole pairs and the excited current has been used for radiation detectors. Although semiconductors have advantages such as high sensitivity and fast response, a drawback is weakness in radiation damage. To improve the radiation resistance, effects of shallow-impurity doping was explored for Si. Specimens of CZ-Si doped with P or B were bombarded with 17 MeV protons. The radiation-induced current of doped Si has been evaluated, as a function of proton fluence. The signal of particle-induced conductivity showed a fairly constant response to a proton flux, up to 1015 ions/cm2. The fluence range applicable as Si sensors was extended 103-104 times as much as that of non-doped Si, instead of a lower signal-to-noise ratio. Shallow impurities passivate the deep centers of radiation-induced defects, and the radiation tolerance continues until the pre-existent carriers are exhausted. The tolerant fluence is also usable to detect the integrated fluence, by controlling the initial impurity concentration.


Author(s):  
N. Osakabe ◽  
J. Endo ◽  
T. Matsuda ◽  
A. Tonomura

Progress in microscopy such as STM and TEM-TED has revealed surface structures in atomic dimension. REM has been used for the observation of surface dynamical process and surface morphology. Recently developed reflection electron holography, which employes REM optics to measure the phase shift of reflected electron, has been proved to be effective for the observation of surface morphology in high vertical resolution ≃ 0.01 Å.The key to the high sensitivity of the method is best shown by comparing the phase shift generation by surface topography with that in transmission mode. Difference in refractive index between vacuum and material Vo/2E≃10-4 owes the phase shift in transmission mode as shownn Fig. 1( a). While geometrical path difference is created in reflection mode( Fig. 1(b) ), which is measured interferometrically using high energy electron beam of wavelength ≃0.01 Å. Together with the phase amplification technique , the vertivcal resolution is expected to be ≤0.01 Å in an ideal case.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


Author(s):  
K. H. Sedeek ◽  
K. Aboualfotouh ◽  
S. M. Hassanein ◽  
N. M. Osman ◽  
M. H. Shalaby

Abstract Background Acute bilateral lower limb weakness is a common problem in children which necessitates a rapid method for diagnosis. MRI is a non-invasive imaging technique that produces high-quality images of the internal structure of the brain and spinal cord. Results MRI was very helpful in reaching rapid and prompt diagnosis in children with acute inability to walk. Acute disseminated encephalomyelitis (ADEM), Guillain–Barré syndrome (GBS), and acute transverse myelitis (ATM) were the most common causes in our study. MRI proved to be of high sensitivity in detecting the lesions and reaching the diagnosis in ADEM and GBS; however, there was no significant relation between the lesions’ size, enhancement pattern, and severity of the disease or prognosis, yet in ATM the site of the lesion and number of cord segment affection were significantly related to the severity of the disease and prognosis. Conclusion MRI is a quick tool to reach the diagnosis of children with acute secondary inability to walk, and to eliminate other differential diagnosis which is essential for proper treatment and rapid full recovery. It is highly sensitive in detecting the lesions, their site and size.


2021 ◽  
pp. 201010582110061
Author(s):  
Raja Ezman Raja Shariff ◽  
Hafisyatul Aiza Zainal Abidin ◽  
Sazzli Kasim

Cardiac amyloidosis is a severely underdiagnosed cause of heart failure with preserved ejection fraction. We report a case of highly probable transthyretin (ATTR) cardiac amyloidosis (ATTR-CA) diagnosed through the assistance of non-invasive multimodality imaging. An 81-year-old man presented with worsening dyspnoea, reduced effort tolerance and limb swelling. Examination and bedside investigations demonstrated congestive cardiac failure. On arrival, N-terminal-pro B-type natriuretic peptide was 2400 ng/L, and high-sensitivity troponin T was 78 mmol/L. Echocardiography showed severe left and right ventricular hypertrophy, and a Doppler study revealed diastolic dysfunction. Cardiac magnetic resonance imaging revealed on non-conventional dark blood sequence an abnormal inversion time for nulling myocardium suggestive of infiltrative disease, including amyloidosis. The patient was referred for nuclear-based studies involving technetium-99m pyrophosphate which demonstrated changes highly diagnostic of ATTR-CA. Early diagnosis of ATTR-CA remains paramount due to the increasing availability of disease-modifying therapies. Current guidelines recognise the role of multimodality imaging in confidently recognising the disease without the need for histological evidence in the appropriate context, providing an alternative means of diagnosis.


Sign in / Sign up

Export Citation Format

Share Document