scholarly journals PPTFH: Robust Local Descriptor Based on Point-Pair Transformation Features for 3D Surface Matching

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3229
Author(s):  
Lang Wu ◽  
Kai Zhong ◽  
Zhongwei Li ◽  
Ming Zhou ◽  
Hongbin Hu ◽  
...  

Three-dimensional feature description for a local surface is a core technology in 3D computer vision. Existing descriptors perform poorly in terms of distinctiveness and robustness owing to noise, mesh decimation, clutter, and occlusion in real scenes. In this paper, we propose a 3D local surface descriptor using point-pair transformation feature histograms (PPTFHs) to address these challenges. The generation process of the PPTFH descriptor consists of three steps. First, a simple but efficient strategy is introduced to partition the point-pair sets on the local surface into four subsets. Then, three feature histograms corresponding to each point-pair subset are generated by the point-pair transformation features, which are computed using the proposed Darboux frame. Finally, all the feature histograms of the four subsets are concatenated into a vector to generate the overall PPTFH descriptor. The performance of the PPTFH descriptor is evaluated on several popular benchmark datasets, and the results demonstrate that the PPTFH descriptor achieves superior performance in terms of descriptiveness and robustness compared with state-of-the-art algorithms. The benefits of the PPTFH descriptor for 3D surface matching are demonstrated by the results obtained from five benchmark datasets.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Narjes Rohani ◽  
Changiz Eslahchi

Abstract Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction" for predicting unknown DDIs using various information about drugs. Multiple drug similarities based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication data are calculated. At first, NDD uses a heuristic similarity selection process and then integrates the selected similarities with a nonlinear similarity fusion method to achieve high-level features. Afterward, it uses a neural network for interaction prediction. The similarity selection and similarity integration parts of NDD have been proposed in previous studies of other problems. Our novelty is to combine these parts with new neural network architecture and apply these approaches in the context of DDI prediction. We compared NDD with six machine learning classifiers and six state-of-the-art graph-based methods on three benchmark datasets. NDD achieved superior performance in cross-validation with AUPR ranging from 0.830 to 0.947, AUC from 0.954 to 0.994 and F-measure from 0.772 to 0.902. Moreover, cumulative evidence in case studies on numerous drug pairs, further confirm the ability of NDD to predict unknown DDIs. The evaluations corroborate that NDD is an efficient method for predicting unknown DDIs. The data and implementation of NDD are available at https://github.com/nrohani/NDD.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Min-Ling Zhang ◽  
Jun-Peng Fang ◽  
Yi-Bo Wang

In multi-label classification, the task is to induce predictive models which can assign a set of relevant labels for the unseen instance. The strategy of label-specific features has been widely employed in learning from multi-label examples, where the classification model for predicting the relevancy of each class label is induced based on its tailored features rather than the original features. Existing approaches work by generating a group of tailored features for each class label independently, where label correlations are not fully considered in the label-specific features generation process. In this article, we extend existing strategy by proposing a simple yet effective approach based on BiLabel-specific features. Specifically, a group of tailored features is generated for a pair of class labels with heuristic prototype selection and embedding. Thereafter, predictions of classifiers induced by BiLabel-specific features are ensembled to determine the relevancy of each class label for unseen instance. To thoroughly evaluate the BiLabel-specific features strategy, extensive experiments are conducted over a total of 35 benchmark datasets. Comparative studies against state-of-the-art label-specific features techniques clearly validate the superiority of utilizing BiLabel-specific features to yield stronger generalization performance for multi-label classification.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


2021 ◽  
Vol 11 (1) ◽  
pp. 409
Author(s):  
Jaejoong Lee ◽  
Chiho Lee ◽  
Hyeon Hwi Lee ◽  
Kyung Tae Park ◽  
Hyun-Kyo Jung ◽  
...  

A new line-of-sight (LOS) decision algorithm applicable to simulation of electronic warfare (EW) is developed. For accurate simulation, the digital terrain elevation data (DTED) of the region to be analyzed must be reflected in the simulation, and millions of datasets are necessary in the EW environment. In order to obtain real-time results in such an environment, a technology that determines line-of-sight (LOS) quickly and accurately is very important. In this paper, a novel algorithm is introduced for determining LOS that can be applied in an EW environment with three-dimensional (3D) DTED. The proposed method shows superior performance as compared with the simplest point-to-point distance calculation method and it is also 50% faster than the conventional interpolation method. The DTED used in this paper is the data applied as level 0 for the Republic of Korea, and the decision of the LOS at approximately 1.8 million locations viewed by a reconnaissance plane flying 10 km above the ground is determined within 0.026 s.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


Author(s):  
Abhijeet Bhattacharya ◽  
Tanmay Baweja ◽  
S. P. K. Karri

The electroencephalogram (EEG) is the most promising and efficient technique to study epilepsy and record all the electrical activity going in our brain. Automated screening of epilepsy through data-driven algorithms reduces the manual workload of doctors to diagnose epilepsy. New algorithms are biased either towards signal processing or deep learning, which holds subjective advantages and disadvantages. The proposed pipeline is an end-to-end automated seizure prediction framework with a Fourier transform feature extraction and deep learning-based transformer model, a blend of signal processing and deep learning — this imbibes the potential features to automatically identify the attentive regions in EEG signals for effective screening. The proposed pipeline has demonstrated superior performance on the benchmark dataset with average sensitivity and false-positive rate per hour (FPR/h) as 98.46%, 94.83% and 0.12439, 0, respectively. The proposed work shows great results on the benchmark datasets and a big potential for clinics as a support system with medical experts monitoring the patients.


2021 ◽  
Vol 2050 (1) ◽  
pp. 012006
Author(s):  
Xili Dai ◽  
Chunmei Ma ◽  
Jingwei Sun ◽  
Tao Zhang ◽  
Haigang Gong ◽  
...  

Abstract Training deep neural networks from only a few examples has been an interesting topic that motivated few shot learning. In this paper, we study the fine-grained image classification problem in a challenging few-shot learning setting, and propose the Self-Amplificated Network (SAN), a method based on meta-learning to tackle this problem. The SAN model consists of three parts, which are the Encoder, Amplification and Similarity Modules. The Encoder Module encodes a fine-grained image input into a feature vector. The Amplification Module is used to amplify subtle differences between fine-grained images based on the self attention mechanism which is composed of multi-head attention. The Similarity Module measures how similar the query image and the support set are in order to determine the classification result. In-depth experiments on three benchmark datasets have showcased that our network achieves superior performance over the competing baselines.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1038
Author(s):  
Vinh-Tan Nguyen ◽  
Jason Yu Chuan Leong ◽  
Satoshi Watanabe ◽  
Toshimitsu Morooka ◽  
Takayuki Shimizu

The ink drop generation process in piezoelectric droplet-on-demand devices is a complex multiphysics process. A fully resolved simulation of such a system involves a coupled fluid–structure interaction approach employing both computational fluid dynamics (CFD) and computational structural mechanics (CSM) models; thus, it is computationally expensive for engineering design and analysis. In this work, a simplified lumped element model (LEM) is proposed for the simulation of piezoelectric inkjet printheads using the analogy of equivalent electrical circuits. The model’s parameters are computed from three-dimensional fluid and structural simulations, taking into account the detailed geometrical features of the inkjet printhead. Inherently, this multifidelity LEM approach is much faster in simulations of the whole inkjet printhead, while it ably captures fundamental electro-mechanical coupling effects. The approach is validated with experimental data for an existing commercial inkjet printhead with good agreement in droplet speed prediction and frequency responses. The sensitivity analysis of droplet generation conducted for the variation of ink channel geometrical parameters shows the importance of different design variables on the performance of inkjet printheads. It further illustrates the effectiveness of the proposed approach in practical engineering usage.


Sign in / Sign up

Export Citation Format

Share Document