scholarly journals Assessing Visual Exploratory Activity of Athletes in Virtual Reality Using Head Motion Characteristics

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3728
Author(s):  
Markus Wirth ◽  
Sebastian Kohl ◽  
Stefan Gradl ◽  
Rosanna Farlock ◽  
Daniel Roth ◽  
...  

Maximizing performance success in sports is about continuous learning and adaptation processes. Aside from physiological, technical and emotional performance factors, previous research focused on perceptual skills, revealing their importance for decision-making. This includes deriving relevant environmental information as a result of eye, head and body movement interaction. However, to evaluate visual exploratory activity (VEA), generally utilized laboratory settings have restrictions that disregard the representativeness of assessment environments and/or decouple coherent cognitive and motor tasks. In vivo studies, however, are costly and hard to reproduce. Furthermore, the application of elaborate methods like eye tracking are cumbersome to implement and necessitate expert knowledge to interpret results correctly. In this paper, we introduce a virtual reality-based reproducible assessment method allowing the evaluation of VEA. To give insights into perceptual-cognitive processes, an easily interpretable head movement-based metric, quantifying VEA of athletes, is investigated. Our results align with comparable in vivo experiments and consequently extend them by showing the validity of the implemented approach as well as the use of virtual reality to determine characteristics among different skill levels. The findings imply that the developed method could provide accurate assessments while improving the control, validity and interpretability, which in turn informs future research and developments.

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


2021 ◽  
Vol 14 ◽  
Author(s):  
Urszula Karczmarczyk ◽  
Piotr Ochniewicz ◽  
Ewa Laszuk ◽  
Kamil Tomczyk ◽  
Piotr Garnuszek

Background: The choice of mice strain can significantly influence the physiological distribution and may lead to an inadequate assessment of the radiopharmaceutical properties. Objective: This work aims to present how the legal requirements that apply to radiopharmaceuticals contained in the various guidelines determine the choice of the mouse strain for quality control and preclinical studies and affect the results of physiological distribution. Methods: Swiss and BALB/c mice were chosen as commonly used strains in experiments for research and quality control purposes. Radiopharmaceuticals, i.e., preparations containing one or more radioactive isotopes in their composition, are subject to the same legal regulations at every stage of the research, development and routine quality control as all other medicines. Therefore, in vivo experiments are to be carried out to confirm the pharmacological properties and safety. Moreover, if a radiopharmaceutical's chemical structure is unknown or complex and impossible to be determined by physicochemical methods, an analysis of physiological distribution in a rodent animal model needs to be performed. Results: In our studies, thirty-six mice (Swiss n=18, BALB/c n=18) were randomly divided into six groups and injected with the following radiopharmaceuticals: [99mTc]Tc-Colloid, [99mTc]Tc-DTPA and [99mTc]Tc-EHIDA. Measurement of physiological distribution was conducted following the requirements of European Pharmacopoeia (Ph. Eur.) monograph 0689, internal instructions and the United States Pharmacopeia (USP) monograph, respectively. Additionally, at preclinical studies, ten mice (Swiss n=5, BALB/c n=5) were injected with the new tracer [99mTc]Tc-PSMA-T4, and its physiological distribution has been compared. The p-value <0.05 proved the statistical significance of the radiopharmaceutical physiological distribution. Conclusion: We claim that mice strain choice can significantly influence the physiological distribution and may lead to inaccurate quality control results and incomprehensible interpretation of the results from preclinical in vivo studies of a new radiopharmaceutical.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4803
Author(s):  
Andrea Irías-Mata ◽  
Nadine Sus ◽  
Maria-Lena Hug ◽  
Marco Müller ◽  
Walter Vetter ◽  
...  

Tocomonoenols are vitamin E derivatives present in foods with a single double bond at carbon 11’ in the sidechain. The α-tocopherol transfer protein (TTP) is required for the maintenance of normal α-tocopherol (αT) concentrations. Its role in the tissue distribution of α-11′-tocomonoenol (αT1) is unknown. We investigated the tissue distribution of αT1 and αT in wild-type (TTP+/+) and TTP knockout (TTP−/−) mice fed diets with either αT or αT1 for two weeks. αT1 was only found in blood, not tissues. αT concentrations in TTP+/+ mice were in the order of adipose tissue > brain > heart > spleen > lungs > kidneys > small intestine > liver. Loss of TTP function depleted αT in all tissues. αT1, contrary to αT, was still present in the blood of TTP−/− mice (16% of αT1 in TTP+/+). Autoclaving and storage at room temperature reduced αT and αT1 in experimental diets. In conclusion, αT1 is bioavailable, reaches the blood in mice, and may not entirely depend on TTP function for secretion into the systemic circulation. However, due to instability of the test compounds in the experimental diets, further in vivo experiments are required to clarify the role of TTP in αT1 secretion. Future research should consider compound stability during autoclaving of rodent feed.


2004 ◽  
Vol 96 (2) ◽  
pp. 784-791 ◽  
Author(s):  
Jay B. Dean ◽  
Daniel K. Mulkey ◽  
Richard A. Henderson ◽  
Stephanie J. Potter ◽  
Robert W. Putnam

Hyperoxia is a popular model of oxidative stress. However, hyperoxic gas mixtures are routinely used for chemical denervation of peripheral O2 receptors in in vivo studies of respiratory control. The underlying assumption whenever using hyperoxia is that there are no direct effects of molecular O2 and reactive O2 species (ROS) on brain stem function. In addition, control superfusates used routinely for in vitro studies of neurons in brain slices are, in fact, hyperoxic. Again, the assumption is that there are no direct effects of O2 and ROS on neuronal activity. Research contradicts this assumption by demonstrating that O2 has central effects on the brain stem respiratory centers and several effects on neurons in respiratory control areas; these need to be considered whenever hyperoxia is used. This mini-review summarizes the long-recognized, but seldom acknowledged, paradox of respiratory control known as hyperoxic hyperventilation. Several proposed mechanisms are discussed, including the recent hypothesis that hyperoxic hyperventilation is initiated by increased production of ROS during hyperoxia, which directly stimulates central CO2 chemoreceptors in the solitary complex. Hyperoxic hyperventilation may provide clues into the fundamental role of redox signaling and ROS in central control of breathing; moreover, oxidative stress may play a role in respiratory control dysfunction. The practical implications of brain stem O2 and ROS sensitivity are also considered relative to the present uses of hyperoxia in respiratory control research in humans, animals, and brain stem tissues. Recommendations for future research are also proposed.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


2019 ◽  
Vol 20 (14) ◽  
pp. 3503 ◽  
Author(s):  
Mario D. Toro ◽  
Katarzyna Nowomiejska ◽  
Teresio Avitabile ◽  
Robert Rejdak ◽  
Sarah Tripodi ◽  
...  

A large number of preclinical studies suggest the involvement of resveratrol in the prevention and treatment of eye diseases induced by oxidative stress and inflammation. We tested the hypothesis that resveratrol influences many pathways of in vitro and in vivo models of diabetic retinopathy through a systematic literature review of original articles. The review was conducted in accordance with the PRISMA guidelines. A literature search of all original articles published until April 2019 was performed. The terms “resveratrol” in combination with “retina”, “retinal pathology”, “diabetic retinopathy” and “eye” were searched. Possible biases were identified with the adopted SYRCLE’s tool. Eighteen articles met inclusion/exclusion criteria for full-text review. Eleven of them included in vitro experiments, 11 studies reported in vivo data and 3 studies described both in vitro and in vivo experiments. Most of the in vivo studies did not include data that would allow exclusion of bias risks, according to SYRCLE’s risk of bias tool. Both in vitro and in vivo data suggest anti-apoptotic, anti-inflammatory and anti-oxidative actions of resveratrol in models of diabetic retinopathy. However, results on its anti-angiogenic effects are contradictory and need more rigorous studies.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


Sign in / Sign up

Export Citation Format

Share Document