scholarly journals Effect of Resveratrol on In Vitro and In Vivo Models of Diabetic Retinophathy: A Systematic Review

2019 ◽  
Vol 20 (14) ◽  
pp. 3503 ◽  
Author(s):  
Mario D. Toro ◽  
Katarzyna Nowomiejska ◽  
Teresio Avitabile ◽  
Robert Rejdak ◽  
Sarah Tripodi ◽  
...  

A large number of preclinical studies suggest the involvement of resveratrol in the prevention and treatment of eye diseases induced by oxidative stress and inflammation. We tested the hypothesis that resveratrol influences many pathways of in vitro and in vivo models of diabetic retinopathy through a systematic literature review of original articles. The review was conducted in accordance with the PRISMA guidelines. A literature search of all original articles published until April 2019 was performed. The terms “resveratrol” in combination with “retina”, “retinal pathology”, “diabetic retinopathy” and “eye” were searched. Possible biases were identified with the adopted SYRCLE’s tool. Eighteen articles met inclusion/exclusion criteria for full-text review. Eleven of them included in vitro experiments, 11 studies reported in vivo data and 3 studies described both in vitro and in vivo experiments. Most of the in vivo studies did not include data that would allow exclusion of bias risks, according to SYRCLE’s risk of bias tool. Both in vitro and in vivo data suggest anti-apoptotic, anti-inflammatory and anti-oxidative actions of resveratrol in models of diabetic retinopathy. However, results on its anti-angiogenic effects are contradictory and need more rigorous studies.

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2020 ◽  
Vol 3 (1) ◽  
pp. 01-21
Author(s):  
Faisal Ali

Noni (Morinda citrifolia L.) is being evaluated in laboratory research for its benefits as an antioxidant and immunity booster, as well as for its properties to prevent tumors and cure diabetes. The vast spread of Noni in tropical region of the globe, from America reaching to Africa and Southeast Asia, contributed in enhancing its usage and potency due to the diversity in harvest zone. Noni parts comprise fruits, seeds, leaves, and flowers are being used for individual nutritional and therapeutical values. Nevertheless, the fruit is widely characterized to contain the most valuable bioactive substances. On the other hand, diabetic retinopathy (DR) is a microvascular disorder impacting the small blood vessels in the retina, which includes microaneurysms, retinal hemorrhages, and hard exudates results from prolonged exposure to high blood glucose levels. The anti-diabetes effect of Noni extract and juice has been examined but the beneficial role of Noni and its potential mechanisms against the development of diabetic retinopathy phenotype is still ambiguous. This review, therefore, will discusses in details the pharmacological actions of M. citrifolia fruit, along with their isolated phytochemical compounds on diabetic retinopathy markers, through describing the conducted in vitro and in vivo studies as well as clinical data.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


2021 ◽  
Vol 14 (12) ◽  
pp. 1248
Author(s):  
Muhammad Waleed Baig ◽  
Humaira Fatima ◽  
Nosheen Akhtar ◽  
Hidayat Hussain ◽  
Mohammad K. Okla ◽  
...  

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski’s drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood–brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 771 ◽  
Author(s):  
Maria Grazia Rossino ◽  
Giovanni Casini

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.


2021 ◽  
Author(s):  
Natalia Bezdieniezhnykh ◽  
Alexandra Lykhova ◽  
Tamara Kozak ◽  
Taras Zadvornyi ◽  
Olena Voronina ◽  
...  

Abstract Background: The assessment of biosafety of pharmacologically active substances is crucial for determining the feasibility of their medical use. There are controversial issues regarding the use of substances of different origins as implants. Methods: We have conducted the comprehensive studies to determine the in vivo toxicity and in vitro genotoxicity of new generation of hydrophilic gel for implantation (production name of the substance "Activegel") to detail its characteristics and assess its biosafety. Results: In vivo studies have shown the absence of clinical manifestations of intoxication in animals and no abnormalities in their physiological condition, general and biochemical blood tests. Evaluation of the site of the gel application showed no inflammatory reaction and evidenced on normal state of tissues of animal skin. The results of the genotoxicity test indicated that the gel did not affect the parameters of DNA comets and, accordingly, had no genotoxic effect on human peripheral blood lymphocytes. When studying the effect of the gel on malignantly transformed cells in vitro, it was found that the gel for implantation did not change the proliferative activity and viability of human breast cancer cells. Conclusions: Comprehensive in vitro and in vivo study using various experimental model systems showed that the hydrophilic gel for implantation "Activegel" is non-toxic.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5250
Author(s):  
Hae-Jin Lee ◽  
Hae-Lim Kim ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Seung-Hwan Yang

Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety of SR, including SB and SN, need to be conducted.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5914
Author(s):  
Elisa Frederico Seneme ◽  
Daiane Carla dos Santos ◽  
Evelyn Marcela Rodrigues Silva ◽  
Yollanda Edwirges Moreira Franco ◽  
Giovanna Barbarini Longato

Natural products have been used by humanity for many centuries to treat various illnesses and with the advancement of technology, it became possible to isolate the substances responsible for the beneficial effects of these products, as well as to understand their mechanisms. In this context, myristicin, a substance of natural origin, has shown several promising activities in a large number of in vitro and in vivo studies carried out. This molecule is found in plants such as nutmeg, parsley, carrots, peppers, and several species endemic to the Asian continent. The purpose of this review article is to discuss data published in the last 10 years at Pubmed, Lilacs and Scielo databases, reporting beneficial effects, toxicity and promising data of myristicin for its future use in medicine. From 94 articles found in the literature, 68 were included. Exclusion criteria took into account articles whose tested extracts did not have myristicin as one of the major compounds.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1580 ◽  
Author(s):  
Vuanghao Lim ◽  
Edward Schneider ◽  
Hongli Wu ◽  
Iok-Hou Pang

Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3039 ◽  
Author(s):  
Yen-Hao Chang ◽  
Chun Chieh Tseng ◽  
Chih-Yeh Chao ◽  
Chung-Hwan Chen ◽  
Sung-Yen Lin ◽  
...  

To control the degradation rate of magnesium (Mg) alloys, chitosan (CHI) and L-glutamic acid (LGA) were used as coatings on Mg-Zn-Ca alloys via dip coating. In this study, either two or seven CHI/LGA layers were applied as a coating on Mg-2.8Zn-0.8Ca alloy (ZX31) and Mg-2.8Zn-0.8Ca hemostasis clips (ZX31 clips). The morphologies, compositions, and surface roughness of the specimens were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and surface measurement devices. The degradation rates and behavior of the specimens were evaluated by immersing them in simulated body fluids and by applying these ZX31 clips on rabbits’ uterine tubes for five weeks. The specimen with seven layers (ZX31(CHI/LGA)7) exhibited improved corrosion behavior when compared with ZX31 or ZX31(CHI/LGA)2, with a reduced degradation rate of the Mg alloy in a simulated body environment. In vivo experiments showed that ZX31 clips exhibited good biocompatibilities in each group but could not maintain the clamping function for five weeks. The weight loss of ZX31(CHI/LGA)7 was significantly lower than that of the other groups. Consequently, it was verified that CHI can be used as a protective layer on a magnesium alloy surface via in vitro and in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document