scholarly journals Facile and Electrically Reliable Electroplated Gold Contacts to p-Type InAsSb Bulk-Like Epilayers

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5272
Author(s):  
Sebastian Złotnik ◽  
Jarosław Wróbel ◽  
Jacek Boguski ◽  
Małgorzata Nyga ◽  
Marek Andrzej Kojdecki ◽  
...  

Narrow band-gap semiconductors, namely ternary InAsSb alloys, find substantial technological importance for mid-infrared application as photodetectors in medical diagnostics or environmental monitoring. Thus, it is crucial to develop electrical contacts for these materials because they are the fundamental blocks of all semiconductor devices. This study demonstrates that electroplated gold contacts can be considered as a simple and reliable metallization technology for the electrical-response examination of a test structure. Unalloyed electroplated Au contacts to InAsSb exhibit specific contact resistivity even lower than vacuum-deposited standard Ti–Au. Moreover, temperature-dependent transport properties, such as Hall carrier concentration and mobility, show similar trends, with a minor shift in the transition temperature. It can be associated with a difference in metallization technology, mainly the presence of a Ti interlayer in vacuum-deposited contacts. Such a transition may give insight into not only the gentle balance changes between conductivity channels but also an impression of changing the dominance of carrier type from p- to n-type. The magnetotransport experiments assisted with mobility spectrum analysis clearly show that such an interpretation is incorrect. InAsSb layers are strongly p-type dominant, with a clear contribution from valence band carriers observed at the whole analyzed temperature range. Furthermore, the presence of thermally activated band electrons is detected at temperatures higher than 220 K.

2001 ◽  
Vol 693 ◽  
Author(s):  
Th. Gessmann ◽  
Y.-L. Li ◽  
J. W. Graff ◽  
E. F. Schubert ◽  
J. K. Sheu

AbstractA novel type of low-resistance ohmic contacts is demonstrated utilizing polarization-induced electric fields in thin p-type InGaN layers on p-type GaN. An increase of the hole tunneling probability through the barrier and a concomitant significant decrease of the specific contact resistance can be attributed to a reduction of the tunneling barrier width in the InGaN capping layers due to the polarization-induced electric fields. The specific contact resistance of Ni (10 nm) / Au (30 nm) contacts deposited on the InGaN capping layers was determined by the transmission line method. Specific contact resistances of 1.2 × 10-2 Ω cm2 and 6 × 10-3 & cm2 were obtained for capping layer thicknesses of 20 nm and 2 nm, respectively.


1995 ◽  
Vol 382 ◽  
Author(s):  
Patrick W. Leec ◽  
Geoffrey K. Reeves ◽  
Wei Zhou

ABSTRACTThe specific contact resistance, pc, of Au/Zn/Au, Ni/Zn/Ni/Au, Pd/Zn/Pt/Au and Pd/Mln/Sb/Pd/Au contacts to p-In0.47Ga0.53As/ InP has been measured as a function of layer thickness of Zn or Mn. All of the as-deposited contacts were ohmic, with pc = 1−2 × 10−5 Ω cm2. Increasing thickness of the Zn layer above 200 Å in the Au/Zn/Au contacts resulted in a minor decrease in pc while producing no change in the Ni/Zn/Ni/Au metallization. For the as-deposited Pd/Mn/Pd/Au contacts, the value of pc was independent of thickness of the Mn layer but differences in pc emerged at annealing temperatures of ≥ 250°. The analysis of these structures by RBS has shown an extensive intermixing of the metal layers at an annealing temperature of 450 °. In the Pd/Zn/Pt/Au contacts, the value of pc was reduced to a minimum value of 8 × 10−6 Ω cm2 by annealing at a temperature of 500 °. An examination of the Pd/Zn/Pt/Au configuration by RBS has shown that the Pt layer acted as a barrier for the indiffusion of the Au.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


Author(s):  
Ying Wu ◽  
Wei Wang ◽  
Saeid Masudy-Panah ◽  
Yang Li ◽  
Kaizhen Han ◽  
...  

1993 ◽  
Vol 318 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves

ABSTRACTOhmic contacts to p-type InP with an In0.47Ga0.53As buffer layer and an interposed superlattice of 50 Å In0.47Ga0.53As/ 50 Å InP have been investigated. Initial studies of contacts to In0.47Ga0.53As/ InP without the superlattice structure have shown that Pd/Zn/Pd/Au metallization produced a lower specific contact resistance (pc = 1.1 × 10−4 Ω cm2) than Pd/Ge/Au, and over a wider range of anneal temperature than Au/Zn/Au. The incorporation of the superlattice in the p-In0.47Ga0.53As/ InP structure resulted in Pd/Zn/Pd/Au contacts with pc of 3.2 × 10−5 Ω cm2 as-deposited and 7.5 × 10−6 Ω.cm2 after a 500 °C anneal. The presence of Pd/Zn in the metallization was shown as important in reducing pc. Significant intermixing of the metal layers and In0.47Ga0.53As occured at ≥ 350 °C, as revealed by Rutherford backscattering spectrometry.


2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


1999 ◽  
Vol 4 (S1) ◽  
pp. 684-690
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

Sputter-deposited W-based contacts on p-GaN (NA∼1018 cm−3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


Author(s):  
Siziwe Gqoba ◽  
Rafael Rodrigues ◽  
Sharon Lerato Mphahlele ◽  
Zakhele Ndala ◽  
Mildred Airo ◽  
...  

Oleylamine capped WS2 nanostructures were successfully formed at 320 °C via a relatively simple colloidal route. SEM and TEM analyses showed that the 3D nanoflowers that were initially formed disintegrated into 2D nanosheets after prolonged incubation. XPS and XRD analyses confirmed oxidation of WS2 into WO3. Sensors based on these oleylamine capped WS2 nanoflowers and nanosheets still showed a change in electrical response towards various concentrations of NH3 vapour at room temperature in a 25% relative humidity background despite the oxidation. The nanoflowers exhibited n-type response while the nanosheets displayed a p-type response towards NH3 exposure. The nanoflower based sensors showed better response to NH3 vapour exposure than the nanosheets. The sensors showed a good selectivity towards NH3 relative to acetone, ethanol, chloroform and toluene. Meanwhile, a strong interference of humidity to the NH3 response was displayed at high relative humidity levels. The results demonstrated that oleylamine limited the extent of oxidation of WS2 nanostructures. The superior sensing performance of the nanoflowers can be attributed to their hierarchical morphology which enhances the surface area and diffusion of the analyte.


Sign in / Sign up

Export Citation Format

Share Document