scholarly journals Learning a Transform Base for the Multi- to Hyperspectral Sensor Network with K-SVD

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7296
Author(s):  
Thomas Hänel ◽  
Thomas Jarmer ◽  
Nils Aschenbruck

A promising low-cost solution for monitoring spectral information, e.g., on agricultural fields, is that of wireless sensor networks. In contrast to remote sensing, these can achieve more continuous monitoring due to their long-term deployment and are less impacted by the atmosphere, making them a promising solution for the calibration of satellite data. In this paper, we explore an alternative approach for processing data from such a network. Hyperspectral sensors were found to be too complex for such a network. While previous work considered fusing the data from different multispectral sensors in order to derive hyperspectral data, we shift the assessment of the hyperspectral modeling in a separate preprocessing step based on machine learning. We then use the learned data as additional input while using identical multispectral sensors, further reducing the complexity of the sensors. Despite requiring careful parametrization, the approach delivers hyperspectral data of similar and in some cases even better quality.

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 289 ◽  
Author(s):  
Davide Notti ◽  
Alberto Cina ◽  
Ambrogio Manzino ◽  
Alessio Colombo ◽  
Iosif Horea Bendea ◽  
...  

In recent years, the development of low-cost GNSS sensors allowed monitoring in a continuous way movement related to natural processes like landslides with increasing accuracy and limited efforts. In this work, we present the first results of an experimental low-cost GNSS continuous monitoring applied to an unstable slope affecting the Madonna del Sasso Sanctuary (NW Italy). The courtyard of Sanctuary is built on two unstable blocks delimited by a high cliff. Previous studies and non-continuous monitoring showed that blocks suffer a seasonal cycle of thermal expansion and a long-term trend to downslope a few millimeters (2/3) per year. The presence of a continuous monitoring solution could be an essential help to better understand the kinematics of unstable slope. Continuous monitoring could help to forecast a possible paroxysm phase that could end with a failure of the unstable area. The first year of experimental measurements shows a millimetric accuracy of low-cost GNSS, and the long-term trend is in agreement with other monitoring data. We also propose a methodological approach that considers the use of semi-automatized procedures for the identification of anomalous trends and a risk communication strategy. Pro and cons of the proposed methodology are also discussed.


2018 ◽  
Vol 32 (1) ◽  
pp. 31-46
Author(s):  
Diana Tirlea ◽  
Carmen Li ◽  
Alwynne B. Beaudoin ◽  
Emily Moffat

Abstract Museums use gelatin capsules to store small objects and specimens, despite limited documentation of their long-term viability. The Royal Alberta Museum (RAM of Canada) uses gelatin capsules to store seeds, bones, and plant material because of their ease of use, transparency, soft-bodied walls, size availability, and low cost. Recently, RAM staff reported damaged capsules from the palaeontology collections. We evaluated 499 capsules used to store specimens accessioned in 1986 and 1988 and investigated capsule properties using Fourier transform infrared spectroscopy and Oddy testing. Only 4.21% of inspected capsules were dented, cracked, and/or fractured. Based on interviews and testing, we determined that damage to capsules likely resulted during handling (i.e., applied force when opening). We conclude that gelatin capsules offer a good, inexpensive method for long-term storage of small, dried specimens in environmentally controlled conditions. Alternatives to gelatin capsules exist, although their pros and cons require evaluation before use. All storage methods require continuous monitoring for signs of container or specimen deterioration.


2021 ◽  
Vol 7 (8) ◽  
pp. 136
Author(s):  
Mary B. Stuart ◽  
Andrew J. S. McGonigle ◽  
Matthew Davies ◽  
Matthew J. Hobbs ◽  
Nicholas A. Boone ◽  
...  

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone’s abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.


2006 ◽  
Vol 5 (1-2) ◽  
pp. 1-30
Author(s):  
◽  

AbstractThis paper presents a holistic alternative approach to the development of a model of affordable housing within the context of Nigeria. This includes the use of low-cost expanded polystyrene (EPS) foams, solar energy, and rainwater harvesting. The holistic framework also considers the infrastructural requirements and a recreational park that is integrated into a model housing scheme. A cost model is used to estimate the minimum construction costs. The long-term mortgage implications of the results are discussed for the development of affordable housing for low- to medium-income families in developing countries such as Nigeria.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Nitin R. Shirsath ◽  
Ajaygiri K. Goswami

Introduction: These days, a lot of people face some health-related problems in day to day life. The conventional synthetic medicine is not effective enough to cure them alone. The conventional therapy for the management of these health-related issues involves the use of hazardous synthetic chemicals and surgical diagnosis, which have lots of serious side effects. It is necessary to conduct research on herbal medicines, this is an alternative approach to avoid the side effects of synthetic medicines to achieve high effectiveness, low cost and improve patient compliance. Methods: The present survey is an analysis of some of the available data on the use of plants with their biological source, active phytochemicals constituents and a probable activity/ mechanism of action of several classes of drugs. This work also focused on highlighting the advantages of natural medicines for maximum utilization. Results: This article aims to increase awareness about natural medicine and help people find a suitable herbal medicine for the treatment of specific diseases. Conclusion: This article also exhibits the scope for further process in the development of new natural substance for the management of several diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Mao ◽  
Jun Kang Chow ◽  
Pin Siang Tan ◽  
Kuan-fu Liu ◽  
Jimmy Wu ◽  
...  

AbstractAutomatic bird detection in ornithological analyses is limited by the accuracy of existing models, due to the lack of training data and the difficulties in extracting the fine-grained features required to distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in different environments, the model tends to focus on the fine-grained features of birds and achieves higher accuracies. Based on the 100 terabytes of 2-month continuous monitoring data of egrets, our results cover the findings using conventional manual observations, e.g., vertical stratification of egrets according to body size, and also open up opportunities of long-term bird surveys requiring intensive monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, and the relationship of the migration schedules between the great egrets and little egrets.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 320
Author(s):  
Shundao Xie ◽  
Hong-Zhou Tan

Traceability is considered a promising solution for product safety. However, the data in the traceability system is only a claim rather than a fact. Therefore, the quality and safety of the product cannot be guaranteed since we cannot ensure the authenticity of products (aka counterfeit detection) in the real world. In this paper, we focus on counterfeit detection for the traceability system. The risk of counterfeiting throughout a typical product life cycle in the supply chain is analyzed, and the corresponding requirements for the tags, packages, and traceability system are given to eliminate these risks. Based on the analysis, an anti-counterfeiting architecture for traceability system based on two-level quick response codes (2LQR codes) is proposed, where the problem of counterfeit detection for a product is transformed into the problem of copy detection for the 2LQR code tag. According to the characteristics of the traceability system, the generation progress of the 2LQR code is modified, and there is a corresponding improved algorithm to estimate the actual location of patterns in the scanned image of the modified 2LQR code tag to improve the performance of copy detection. A prototype system based on the proposed architecture is implemented, where the consumers can perform traceability information queries by scanning the 2LQR code on the product package with any QR code reader. They can also scan the 2LQR code with a home-scanner or office-scanner, and send the scanned image to the system to perform counterfeit detection. Compared with other anti-counterfeiting solutions, the proposed architecture has advantages of low cost, generality, and good performance. Therefore, it is a promising solution to replace the existing anti-counterfeiting system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


Sign in / Sign up

Export Citation Format

Share Document