scholarly journals The SALT—Readout ASIC for Silicon Strip Sensors of Upstream Tracker in the Upgraded LHCb Experiment

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 107
Author(s):  
Carlos Abellan Abellan Beteta ◽  
Dimitra Andreou ◽  
Marina Artuso ◽  
Andy Beiter ◽  
Steven Blusk ◽  
...  

SALT, a new dedicated readout Application Specific Integrated Circuit (ASIC) for the Upstream Tracker, a new silicon detector in the Large Hadron Collider beauty (LHCb) experiment, has been designed and developed. It is a 128-channel chip using an innovative architecture comprising a low-power analogue front-end with fast pulse shaping and a 40 MSps 6-bit Analog-to-Digital Converter (ADC) in each channel, followed by a Digital Signal Processing (DSP) block performing pedestal and Mean Common Mode (MCM) subtraction and zero suppression. The prototypes of SALT were fabricated and tested, confirming the full chip functionality and fulfilling the specifications. A signal-to-noise ratio of about 20 is achieved for a silicon sensor with a 12 pF input capacitance. In this paper, the SALT architecture and measurements of the chip performance are presented.

2021 ◽  
Author(s):  
Χρήστος Μπακάλης

Ο Μεγάλος Επιταχυντής Αδρονίων (Large Hadron Collider (LHC)), του Ευρωπαϊκού Κέντρου Πυρηνικών Ερευνών (CERN) ξεκίνησε να επιταχύνει τις πρώτες του δέσμες το 2008. Από τις πρώτες μέρες λειτουργίας του, ο LHC έχει επιτρέψει στην επιστημονική κοινότητα να τελέσει πρωτοπόρα πειράματα, που έχουν σαν στόχο να απαντήσουν θεμελιώδη ερωτήματα για τη φύση της ύλης και της ενέργειας. Επειδή τα πειράματα φυσικής υψηλών ενεργειών είναι βασισμένα στη συλλογή δεδομένων μεγάλης κλίμακας, η αύξηση του ρυθμού αντιδράσεων θεωρείται θέμα μείζονας σημασίας. Όσο πιο υψηλός ο ρυθμός αλληλεπιδράσεων, τόσο περισσότερα δεδομένα καταγράφονται, και σπάνια φαινόμενα που υπό άλλες συνθήκες θα επικαλύπτονταν από άλλες διεργασίες, περισσότερο συχνές, θα μπορέσουν να μελετηθούν. Για το λόγο αυτό, ο LHC θα προβεί στις ανάλογες αναβαθμίσεις, οι οποίες θα αυξήσουν την ενέργεια κέντρου μάζας, και την φωτεινότητά του. Επιπλέον αναβαθμίσεις που θα οδηγήσουν στην Phase-II 2026-2038, θα αυξήσουν τη φωτεινότητα ακόμα περισσότερο, με την ενέργεια κέντρου μάζας να φτάνει τα 14 TeV. Η αύξηση της φωτεινότητας θα οδηγήσει και σε αύξηση του ρυθμού αλληλεπιδράσεων, άρα και στη ροή σωματιδίων που διαπερνούν τους ανιχνευτές του μεγάλου επιταχυντή αδρονίων. Για αυτό το λόγο ο ανιχνευτής Toroidal LHC ApparatuS (ATLAS), που είναι ο μεγαλύτερος του LHC, θα αντικαταστήσει τα εσωτερικά καπάκια του μιονικού φασματομέτρου κατά τη διάρκεια της δεύτερης μεγάλης παύσης. Η αναβάθμιση New Small Wheel (NSW) όπως καλείται, θα αποτελείται από δύο τεχνολογίες ανιχνευτών, τους Micromegas (MM) και τους small-strip Thin Gap Chambers (sTGC). Ο NSW έχει σχεδιαστεί να υπομένει το αυξημένο υπόβαθρο λόγω των αναβαθμίσεων του επιταχυντή, προσφέροντας δεδομένα ανακατασκευής τροχιών μιονίων στον ATLAS, καθώς και πληροφορίες σκανδαλισμού. Ο ακρογωνιαίος λίθος του συστήματος ανάγνωσης δεδομένων του NSW, είναι το VMM Application-Specific Integrated Circuit (ASIC), μία ηλεκτρονική μονάδα που θα χρησιμοποιηθεί και από τις δύο τεχνολογίες ανιχνευτών του NSW. Λόγω του σχεδιασμού του, το VMM έχει προταθεί και σε μία πληθώρα άλλων πειραμάτων που κάνουν χρήση ανάλογων ανιχνευτικών συστημάτων. Το VMM αποτελείται από 64 ανεξάρτητα κανάλια, κάθε ένα εκ των οποίων προβαίνει σε μετρήσεις ακριβείας πάνω στους ηλεκτρονικούς παλμούς που δημιουργούνται από τους ανιχνευτές όταν διαπεραστούν από μιόνια, ενώ προσφέρει και γρήγορα δεδομένα για το σύστημα σκανδαλισμού του ATLAS. Η πρώτη έκδοση του VMM έκανε την εμφάνισή του το 2012, και μετά από τέσσερις εκδόσεις, αποφάνθηκε ότι είναι έτοιμο να εξυπηρετήσει τις ανάγκες του NSW. Καμία από αυτές τις αναβαθμίσεις δεν θα μπορούσε να είχε ολοκληρωθεί, αν δεν υπήρχε μία αξιόπιστη πλατφόρμα χαρακτηρισμού της μονάδας. Αυτή η πλατφόρμα ήρθε στη μορφή του VMM Readout System (VRS), που κάνει χρήση μονάδων Field-Programmable Gate Array (FPGA), προκειμένου να ληφθούν τα δεδομένα από το VMM, και να διαμορφωθεί τη λειτουργία του. Με έμφαση στην ευελιξία, το υλικολογισμικό των FPGA του VRS, είχε σχεδιαστεί με τέτοιο τρόπο προκειμένου να εξυπηρετήσει διάφορα σενάρια λήψης δεδομένων (π.χ. εργαστηριακές συνθήκες χωρίς ανιχνευτή, ή τεστ-δέσμης). Ένα μεγάλο κομμάτι της παρούσας διατριβής αφιερώνεται στην περιγραφή της αρχιτεκτονικής του εν λόγω υλικολογισμικού, που αναπτύχθηκε για να καλύψει τις ανάγκες της αναβάθμισης του ATLAS NSW. Το σύστημα χρησιμοποιήθηκε για να επιβεβαιώσει την ορθή λειτουργία του VMM, να κάνει τον μαζικό έλεγχο των τελικών μονάδων του VMM πριν αυτά εγκατασταθούν στον ATLAS, και να λάβει τα δεδομένα από το VMM, μαζί με τον ανιχνευτή Micromegas, σε συνθήκες τεστ-δέσμης. Μετά την παραγωγή των τελικών μονάδων ASIC που διαβάζουν και διαμορφώνουν τις λειτουργίες του VMM στο πείραμα ATLAS, το σύστημα που βασιζόταν σε FPGA αντικαταστάθηκε από το τελικό, που είχε σα βάση ένα σύστημα λήψης δεδομένων επόμενης γενιάς, που ονομάζεται Front-End LInk eXchange (FELIX). Ένα ποσοστό της παρούσας εργασίας περιγράφει τα εργαλεία λογισμικού που αναπτύχθηκαν προκειμένου να διευκολυνθεί η διαδικασία ενσωμάτωσης του ηλεκτρονικού συστήματος του NSW με το FELIX. Επίσης, τα εν λόγω πακέτα λογισμικού χρησιμοποιήθηκαν και για στη διαδικασία ελέγχου της ορθής λειτουργίας των τελικών ανιχνευτών του Micromegas, πριν αυτοί εγκατασταθούν στον ATLAS, καθώς τα δεδομένα τους λαμβάνονταν από το τελικό σύστημα λήψης δεδομένων. Το τελευταίο Κεφάλαιο της παρούσας διατριβής, αφιερώνεται στην περιγραφή του Slow Control Adapter eXtension (SCAX), το οποίο είναι ένα πακέτο υλικολογισμικού που ενσωματώνεται σε ένα FPGA και μιμείται μία βασική ηλεκτρονική μονάδα του NSW, ονόματι SCA ASIC. Το SCA είναι μια μονάδα που βρίσκεται στα ηλεκτρονικά του NSW, και χρησιμοποιείται για τη διαμόρφωση των λειτουργιών όλων των άλλων μονάδων ASIC του συστήματος. To SCAX από την άλλη, έχει σχεδιαστεί για να υποστηρίξει FPGA που είναι επίσης μέρος του συστήματος ηλεκτρονικών του ATLAS, και βρίσκονται μακριά από περιοχές υψηλής ραδιενέργειας. Δίνει τη δυνατότητα στο χρήστη του να γράψει παραμέτρους διαμόρφωσης λειτουργιών στη λογική του FPGA που βρίσκεται, και να αναγνώσει τιμές κατάστασης από καταχωρητές του υπόλοιπου υλικολογισμικού. Το SCAX μιμείται το πρωτόκολλο I2C που το SCA χρησιμοποιεί για να επικοινωνήσει με άλλες συσκευές, ενώ επίσης μιμείται και το πρωτόκολλο μεταξύ αυτού και του συστήματος FELIX. Με αυτόν τον τρόπο, επιτρέπει τη χρήση της ήδη υπάρχουσας υποδομής λογισμικού και ηλεκτρονικών, ώστε να διαμορφώσει τις λειτουργίες του FPGA μέσα στο οποίο έχει υλοποιηθεί. Το SCAX χρησιμοποιείται από τον επεξεργαστή σκανδαλισμού του NSW, και μπορεί να χρησιμοποιηθεί από οποιοδήποτε FPGA που επικοινωνεί με το FELIX.


2018 ◽  
Vol 174 ◽  
pp. 07001 ◽  
Author(s):  
George Iakovidis

The VMM is a custom Application Specific Integrated Circuit (ASIC) that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21×21 mm2. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are described.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 679
Author(s):  
Jongpal Kim

An instrumentation amplifier (IA) capable of sensing both voltage and current at the same time has been introduced and applied to electrocardiogram (ECG) and photoplethysmogram (PPG) measurements for cardiovascular health monitoring applications. The proposed IA can switch between the voltage and current sensing configurations in a time–division manner faster than the ECG and PPG bandwidths. The application-specific integrated circuit (ASIC) of the proposed circuit design was implemented using 180 nm CMOS fabrication technology. Input-referred voltage noise and current noise were measured as 3.9 µVrms and 172 pArms, respectively, and power consumption was measured as 34.9 µA. In the current sensing configuration, a current noise reduction technique is applied, which was confirmed to be a 25 times improvement over the previous version. Using a single IA, ECG and PPG can be monitored in the form of separated ECG and PPG signals. In addition, for the first time, a merged ECG/PPG signal is acquired, which has features of both ECG and PPG peaks.


1994 ◽  
Vol 04 (04) ◽  
pp. 501-516 ◽  
Author(s):  
BOGDAN T. FIJALKOWSKI ◽  
JAN W. KROSNICKI

Concepts of the electronically-controlled electromechanical/mechanoelectrical Steer-, Autodrive- and Autoabsorbable Wheels (SA2W) with their brushless Alternating Current-to-Alternating Current (AC-AC), Alternating Current-to-Direct Current-Alternating Current (AC-DC-AC) and/or Direct Current-to-Alternating Current (DC-AC)/Alternating Current-to-Direct Current (AC-DC) macroelectronic converter commutator (macro-commutator) wheel-hub motors/generators with the Application Specific Integrated Matrixer (ASIM) macroelectronic converter commutators (ASIM macrocommutators) and Application Specific Integrated Circuit (ASIC) microelectronic Neuro-Fuzzy (NF) computer (processor) controllers (ASIC NF microcontrollers) for environmentally-friendly tri-mode supercars (advanced ultralight hybrids) have been conceived by the first author and designed by both authors with the Cracow University of Technology’s Automotive Mechatronics Research and Development (R&D) Team. These electromechanical/mechanoelectrical wheel-hub motors/generators, respectively, for instance, can be composed of the outer rotor with the Interior Permanent Magnet (IPM) poles and the inner stator that has the three-phase armature winding. The macroelectronic converter commutator establishes the AC-AC cycloconverter, AC-DC rectifier-DC-AC inverter and/or DC-AC inverter/AC-DC rectifier ASIM macrocommutator. The microelectronic NF computer (processor) controller establishes the ASIC microcomputer-based NF microcontroller. By adopting continuous semiconductor bipolar electrical valves in the high-power ASIM, it has been able to increase the commutation (switching) frequency and reduce harmonic losses of the electromechanical/mechanoelectrical wheel-hub motors/generators, respectively.


2017 ◽  
Vol 6 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Takahiro Zushi ◽  
Hirotsugu Kojima ◽  
Hiroshi Yamakawa

Abstract. Plasma waves are important observational targets for scientific missions investigating space plasma phenomena. Conventional fast Fourier transform (FFT)-based spectrum plasma wave receivers have the disadvantages of a large size and a narrow dynamic range. This paper proposes a new type of FFT-based spectrum plasma wave receiver that overcomes the disadvantages of conventional receivers. The receiver measures and calculates the whole spectrum by dividing the observation frequency range into three bands: bands 1, 2, and 3, which span 1 Hz to 1 kHz, 1 to 10 kHz, and 10 to 100 kHz, respectively. To reduce the size of the receiver, its analog section was realized using application-specific integrated circuit (ASIC) technology, and an ASIC chip was successfully developed. The dimensions of the analog circuits were 4.21 mm  ×  1.16 mm. To confirm the performance of the ASIC, a test system for the receiver was developed using the ASIC, an analog-to-digital converter, and a personal computer. The frequency resolutions for bands 1, 2, and 3 were 3.2, 32, and 320 Hz, respectively, and the average time resolution was 384 ms. These frequency and time resolutions are superior to those of conventional FFT-based receivers.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 464
Author(s):  
Angshuman Khan ◽  
Sudip Halder ◽  
Shubhajit Pal

This article includes a simple design of Vedic square calculator for Application Specific Integrated Circuit (ASIC). This is a straightforward and innovative design of Vedic calculator using only few basic digital logic gates. Among the all sutras and sub sutras of ancient Vedic mathematics, the sutra ‘Urdhva Tiryagbyham’ is used here for square calculation of two bits numbers which results in an effortless and faster method of square calculation than all the existing methods. The design and minimization of the circuit has been carried out to achieve a standard architecture that is the simplest too. Here Xilinx ISE software tool is used rigorously to simulate the architecture.  


Computers ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 70
Author(s):  
Carolina Fernández ◽  
Sergio Giménez ◽  
Eduard Grasa ◽  
Steve Bunch

The lack of high-performance RINA (Recursive InterNetwork Architecture) implementations to date makes it hard to experiment with RINA as an underlay networking fabric solution for different types of networks, and to assess RINA’s benefits in practice on scenarios with high traffic loads. High-performance router implementations typically require dedicated hardware support, such as FPGAs (Field Programmable Gate Arrays) or specialized ASICs (Application Specific Integrated Circuit). With the advance of hardware programmability in recent years, new possibilities unfold to prototype novel networking technologies. In particular, the use of the P4 programming language for programmable ASICs holds great promise for developing a RINA router. This paper details the design and part of the implementation of the first P4-based RINA interior router, which reuses the layer management components of the IRATI Linux-based RINA implementation and implements the data-transfer components using a P4 program. We also describe the configuration and testing of our initial deployment scenarios, using ancillary open-source tools such as the P4 reference test software switch (BMv2) or the P4Runtime API.


Sign in / Sign up

Export Citation Format

Share Document