scholarly journals Research Progress on Quality Control Methods for Xiaochaihu Preparations

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 199
Author(s):  
Guangzheng Xu ◽  
Hui Wang ◽  
Yingqian Deng ◽  
Keyi Xie ◽  
Weibo Zhao ◽  
...  

Xiaochaihu (XCH) is a classic Chinese medicine formula. XCH tablet, XCH granule, XCH capsule, and XCH effervescent tablet are included in the Chinese Pharmacopoeia. In this review, the formula and quality standards of XCH preparations at home and abroad were compared. The differences in manufacturing process of XCH preparations are discussed. The progress of research on the qualitative identification, quantitative detection and fingerprint chromatogram/specific chromatogram of XCH preparations was reviewed. The characteristic components of Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine and Jujubae Fructus was rarely analyzed for XCH preparations. It is suggested that the specificity of drug quality detection methods should be improved. Considering drug safety and drug efficacy, it is suggested to set the upper and lower limits of the content of saikosaponins. The standards for heavy metals and other limited items for XCH preparations are also suggested to be set.

2013 ◽  
Vol 357-360 ◽  
pp. 1543-1547
Author(s):  
Chuan Li Wang ◽  
Shu Qing Sun ◽  
Jian Zhong Xia ◽  
Bo Qian ◽  
Yong Sheng Li ◽  
...  

High pressure jet grouting piles have a wide range of application in the engineering field. However, nowadays the increasing construction depth leads to an increasing difficulty of construction,which involves that the quality of construction is much more difficult to control. In this paper, some examples are given of the Luoyuan ultra-deep high pressure jet grouting piles. These examples are described with the used construction quality control methods and preventive recommendations for work construction quality detection methods. That is why this paper has an important guiding significance for similar projects.


Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 45 ◽  
Author(s):  
Alphus Dan Wilson

The development of electronic-nose (e-nose) technologies for disease diagnostics was initiated in the biomedical field for detection of biotic (microbial) causes of human diseases during the mid-1980s. The use of e-nose devices for disease-diagnostic applications subsequently was extended to plant and animal hosts through the invention of new gas-sensing instrument types and disease-detection methods with sensor arrays developed and adapted for additional host types and chemical classes of volatile organic compounds (VOCs) closely associated with individual diseases. Considerable progress in animal disease detection using e-noses in combination with metabolomics has been accomplished in the field of veterinary medicine with new important discoveries of biomarker metabolites and aroma profiles for major infectious diseases of livestock, wildlife, and fish from both terrestrial and aquaculture pathology research. Progress in the discovery of new e-nose technologies developed for biomedical applications has exploded with new information and methods for diagnostic sampling and disease detection, identification of key chemical disease biomarkers, improvements in sensor designs, algorithms for discriminant analysis, and greater, more widespread testing of efficacy in clinical trials. This review summarizes progressive advancements in utilizing these specialized gas-sensing devices for numerous diagnostic applications involving noninvasive early detections of plant, animal, and human diseases.


2014 ◽  
Vol 955-959 ◽  
pp. 1397-1404 ◽  
Author(s):  
Li Na Shi ◽  
Xun Xu ◽  
Xiao Yan Dou ◽  
Xu Dong Zhao

PM2.5 is one of the most important components in air pollution. It is also the focus of the most closely watched at home and abroad. Based on its small size, complex components, and strongenvironmental activity, it can be used as a carrier for chemicals, heavy metals, bacteria, toxins and carcinogens into the body. Then, as a result, it will affect Human Body Health. Heavy metals are important components of PM2.5, and the long-term accumulation of heavy metals in PM2.5 poses a great threat on human health and the environment. This paper reviewed the sources, distribution methods,chemical form, detection methods, disposal way, research progress of heavy metals in PM2.5. As a result, it provided a reference for in-depth study on the future.


2011 ◽  
Vol 228-229 ◽  
pp. 1185-1189
Author(s):  
Su Qi ◽  
Xing Xing Chen

The priority of traditional tunnel concrete quality testing method is drilling core .The traditional method damage tunnel structure and detection speed is slowly.we use this method cann’t effectively meet the demand of rapid growth of tunnel concrete qulity testing. So the more fast and effective detection methods are needed.A new fast and effective kind of concrete quality detection methods is ground penetrating radar can meet the extensive tunnel concrete nondestructive testing. This paper introduces the basic principle of ground penetrating radar.I illustrate the application of railway tunnel testing by the testing in Ju Gan runnel of Lan Yue railway.TI is significance for railway tunnel concrete in future.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yizhe Chen ◽  
Yichun Wang ◽  
Hui Wang

Fiber metal laminate (FML) is a kind of lightweight material with excellent mechanical properties combining advantages of metal laminates and fiber reinforced composites. It has been widely used in the aerospace and transportation fields and is especially used as structural material such as aircraft skins, wings, and tails. However, under complex service conditions, interlaminar failure in FMLs greatly reduced mechanical properties of the material, even leading to serious economic and safety disasters. The failure and destruction of important structural parts of aircraft and other manned transportation vehicles are extremely unsafe for people. Therefore, it is of great significance to summarize the interlaminar failure behavior of FMLs and find ways to avoid these defects. This review paper is a collection of various researches done by many groups, which systematically discuss the interlaminar failure behaviors and their control methods of FMLs. The application status of several common FMLs in aircraft structures was given. The common interlaminar failure modes of FMLs and the testing and evaluation methods of interlaminar properties were stated. The failure mechanisms and the corresponding control methods were analyzed. Finally, the future developments of FMLs were also discussed by the authors. Through this review article, readers can obtain new research progress about the control method, the mechanism and future development on the failure behavior of FMLs in a more efficient way.


2013 ◽  
Vol 7 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Kun Chen ◽  
◽  
Xing Fu ◽  
Dante J. Dorantes-Gonzalez ◽  
Yanning Li ◽  
...  

In this paper, the principle of surface acoustic wave techniques and their application to the monitoring of cracks are presented and compared to other classic non-destructive techniques. A practical classification of methods regarding the excitation and detection of surface acoustic waves is enumerated, among them, laser-generated surface acoustic wave technique is carefully analyzed as a prospective technique, and two important detection methods using piezoelectric and light deflection are described. Then, the strategies and variables used in crack monitoring based on laser-generated surface acoustic wave technique are reviewed. To achieve the goal of quantitative detection of cracks, most researchers use numerical models and experiments to characterize main crack features. Discussions and prospective approaches for further quantitative monitoring of cracks are provided.


2013 ◽  
Vol 441 ◽  
pp. 572-575
Author(s):  
Fei Peng Wang ◽  
Qian Hui Yang ◽  
Ling Chen Zheng ◽  
Hong Li Chen

In recent years, with many cities limiting motorcycle-related regulations in China, Electric bicycles due to the inexpensive, easy to maneuver, energy saving and environmental protection, are used by people of all ages. Now, electric bicycles have become one of the main means of transport, back of electric bicycles as "child seat" to carry child travel commonplace, traffic accidents are also frequent. Through the widespread use of electric bicycle child seat from the safety and comfort of both analysis concluded: these structures a variety of seat provides safety and security for their children is very limited. Next child safety seat structure, strength, and to do in-depth research, quality standards and quality control methods.


2014 ◽  
Vol 97 (5) ◽  
pp. 1299-1309 ◽  
Author(s):  
Rashmi Chhabra ◽  
Gurinder Jit Randhawa ◽  
Rajesh K Bhoge ◽  
Monika Singh

Abstract Qualitative diagnostics for all five commercialized genetically modified (GM) cotton events for insect resistance in India is being reported for the first time in this paper. The cost-effective and robust multiplex PCR (MPCR)-based detection assay, distinguishing the insect resistant transgenic Bt cotton events, viz., MON531, MON15985, Event 1, GFM-cry1A, and MLS-9124, has been developed. This decaplex PCR assay targets nine transgenic elements, viz., sequences of four transgenes, three transgene constructs, and two event-specific sequences along with one endogenous reference gene. The LOD of the qualitative MPCR assay was up to 0.1%. A quantitative detection method for four widely commercially cultivated GM cotton events, namely, MON531, MON15985, Event 1, and GFM-cry1A, covering 99.5% of the total area under GM cultivation in the country, is also reported. A construct-specific real-time PCR assay has been developed for quantification of these GM cotton events with LOQ <0.05% and LOD <0.025%. The developed assays will be of great use to screen for the presence/absence of authorized GM cotton events in unknown samples and to check the authenticity of GM cotton seed samples.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongke Qu ◽  
Chunmei Fan ◽  
Mingjian Chen ◽  
Xiangyan Zhang ◽  
Qijia Yan ◽  
...  

AbstractThe cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods. Graphical Abstract


2020 ◽  
Vol 110 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Lucy R. Stewart ◽  
Hélène Sanfaçon ◽  
Xiaofeng Wang ◽  
Jesús Navas-Castillo ◽  
...  

Given the importance of and rapid research progress in plant virology in recent years, this Focus Issue broadly emphasizes advances in fundamental aspects of virus infection cycles and epidemiology. This Focus Issue comprises three review articles and 18 research articles. The research articles cover broad research areas on the identification of novel viruses, the development of detection methods, reverse genetics systems and functional genomics for plant viruses, vector and seed transmission studies, viral population studies, virus–virus interactions and their effect on vector transmission, and management strategies of viral diseases. The three review articles discuss recent developments in application of prokaryotic clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) technology for plant virus resistance, mixed viral infections and their role in disease synergism and cross-protection, and viral transmission by whiteflies. The following briefly summarizes the articles appearing in this Focus Issue .


Sign in / Sign up

Export Citation Format

Share Document