scholarly journals Risk of Low Productivity is Dependent on Farm Characteristics: How to Turn Poor Performance into an Advantage

2019 ◽  
Vol 11 (19) ◽  
pp. 5504 ◽  
Author(s):  
Peltonen-Sainio ◽  
Jauhiainen

The principle role of agriculture is to produce food for the increasing human population. However, the environmental footprint needs to be simultaneously reduced. Data from the Finnish Food Authority (181,108 parcels in the south-western crop production region of Finland) were used to identify the farming system, farm type, farm size, field parcel scale, physical parcel characteristics, cultivated crops, crop rotations and cultivars. Sentinel-2 derived Normalized Difference Vegetation Index (NDVI) values were used to identify fields with very low productivity. Thereby, the impacts of farm and field characteristics on risks of low NDVI values and their associated means of coping by the farmer were studied. High variations in field parcel characteristics and growth capacity were typical in the studied area. Although it is challenging for farmers, high variation can provide many opportunities for the development of multifunctional and resource-smart production systems, e.g., by optimizing land use: allocating high-quality fields for food production, and poorly performing fields for extensification, i.e., the production of environmental benefits. Many usable policy instruments are available to support such a transition, but more focus should be put onto the most efficient means to enable progress towards environmentally, economically and socially sustainable high-latitude agricultural systems.

2021 ◽  
Vol 13 (9) ◽  
pp. 1618
Author(s):  
Melakeneh G. Gedefaw ◽  
Hatim M. E. Geli ◽  
Temesgen Alemayehu Abera

Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.


2013 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Jessica R. Goldberger ◽  
Robert Emmet Jones ◽  
Carol A. Miles ◽  
Russell W. Wallace ◽  
Debra A. Inglis

AbstractCommercial farmers have been using polyethylene plastic mulch since the 1950s. Despite the affordability and effectiveness of polyethylene mulch, the disposal process is financially and environmentally costly. Biodegradable plastic mulches, an ecologically sustainable alternative to polyethylene mulch films, were introduced in the 1980s. Biodegradable plastic mulches can be tilled into the soil or composted at the end of the season, reducing the labor and environmental costs associated with plastic removal and disposal. However, research results are mixed as to the effectiveness, degradability and ease-of-use of biodegradable plastic mulches. In 2008–2012, researchers, funded by a USDA Specialty Crop Research Initiative grant, conducted surveys and focus groups in three different agricultural regions of the USA to better understand the barriers and bridges to the adoption of biodegradable plastic mulches for specialty crop production systems. Data on the experiences and views of specialty crop growers, agricultural extension agents, agricultural input suppliers, mulch manufacturers and other stakeholders showed that the major adoption barriers were insufficient knowledge, high cost and unpredictable breakdown. The major bridges to adoption were reduced waste, environmental benefits and interest in further learning. These findings are discussed with reference to the classic innovation diffusion model, specifically work on the innovation–decision process and the attributes of innovations. The study results can be used to guide the activities of those involved in the design, development and promotion of biodegradable plastic mulches for US specialty crop production systems.


2021 ◽  
Author(s):  
Javier Aparicio ◽  
Rafael Pimentel ◽  
María José Polo

<p>In Mediterranean mountain regions, traditional irrigation systems still persist in areas where the  modernization approaches do not succeed in being operational. It is common that these systems alter the soil uses, vegetation distribution and hydrological natural regime. </p><p>This is the case of the extensive network of irrigation ditches in the Sierra Nevada Mountain Range in southeastern Spain (an UNESCO  Reserve of the Biosphere, with areas as Natural and National Park), which originated in Muslim times, and is still operational in some areas. These ditches have contributed to maintaining local agricultural systems and populations in basins dominated by snow conditions, and they constitute a traditional regulation of water resources in the area. The network is made up of two types of irrigation ditches: “careo” and irrigation ditches. The first, the "careo", collects the meltwater and infiltrates it along its course, maintaining a high level of soil moisture and favouring deep percolation volumes that can be later consumed by the population through springs and natural fountains. The second, the irrigation ones, are used to transport water from the natural sources to the agricultural plots downstream the mountain area. In 2014, several irrigation ditches were restored in the Natural Park. This is a chance to further explore and quantify the role of this network in the hydrological budget on a local basis.  </p><p>The aim of this work is to evaluate to what extent the existence of these intermittent water networks affects the evolution of the surrounding vegetation. For this, one of the restored systems,  the Barjas Ditch in the village of Cañar, with a successful water circulation along its way, was selected from the increase of the soil water content in the ditch influence area and, indirectly a differential development of vegetation. Two analyses are performed using remote sensing information. The Normalized Difference Vegetation Index, NDVI, which is a spectral index used to estimate the quantity, quality and development of vegetation that can therefore be used indirectly as an indicator of the state of soil moisture, was used as the indicator of evolution. For this purpose, a historical set of LandSat satellite images  (TM, ETM+ and OLI) has been used. On the one hand, a global analysis on the whole mountainous range was carried out, comparing NDVI patterns in areas affected and non-affected by the ditches. On the other hand, the restored  Barjas ditch is used to assess vegetation changes before and after the restoration.</p>


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 422
Author(s):  
Ramon Felipe Bicudo da Silva ◽  
Mateus Batistella ◽  
James D. A. Millington ◽  
Emilio Moran ◽  
Luiz A. Martinelli ◽  
...  

Agricultural systems are heterogeneous across temporal and spatial scales. Although much research has investigated farm size and economic output, the synergies and trade-offs across various agricultural and socioeconomic variables are unclear. This study applies a GIS-based approach to official Brazilian census data (Agricultural Censuses of 1995, 2006, and 2017) and surveys at the municipality level to (i) evaluate changes in the average soybean farm size across the country and (ii) compare agricultural and socioeconomic outcomes (i.e., soybean yield, agricultural production value, crop production diversity, and rural labor employment) relative to the average soybean farm size. Statistical tests (e.g., Kruskal–Wallis tests and Spearman’s correlation) were used to analyze variable outcomes in different classes of farm sizes and respective Agricultural Censuses. We found that agricultural and socioeconomic outcomes are spatially correlated with soybean farm size class. Therefore, based on the concepts of trade-offs and synergies, we show that municipalities with large soybean farm sizes had larger trade-offs (e.g., larger farm size was associated with lower crop diversity), while small and medium ones manifest greater synergies. These patterns are particularly strong for analysis using the Agricultural Census of 2017. Trade-off/synergy analysis across space and time is key for supporting long-term strategies aiming at alleviating unemployment and providing sustainable food production, essential to achieve the UN Sustainable Development Goals.


Author(s):  
BM Refat Faisal ◽  
Hafizur Rahman ◽  
Sukumar Dutta ◽  
Nasrin Sultana ◽  
Md Abu Taleb Pramanik

The present investigation illustrates an inclusive approach to extract remotely sensed Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) (AQUA/TERRA) imageries to find out a relationship with Boro rice production for forecasting crop production in the context of Bangladesh. This study utilizes AQUA/TERRA MODIS reflectance data (250 m resolution) for the month of March (Peak-greenness period) to calculate the average NDVI values by following MODIS based algorithm at district level during 2011-2016. The linear regression analysis of calculated average NDVI and BBS estimated Boro rice production statistics reveals a significant positive relationship due to maximize photosynthetic activities. Among the regression equations from (2011-2016), the highest regression coefficients R2=0.87 and R2=0.85 for AQUA and TERRA MODIS data have been found respectively in 2015. Therefore this regression equation can be used for future estimation of Boro rice production at country scale. However, further testing and simulation of this regression model is required to generate Boro rice production forecasting dataset on timely basis. Hence this study summarizes that, NDVI based regression equation may be an effective process to forecast the Boro rice production which can play an important role in decision-making process relevant to the food security issues of Bangladesh. The Dhaka University Journal of Earth and Environmental Sciences, Vol. 8(1), 2019, P 33-40


Author(s):  
B. K. Kenduiywo ◽  
A. Ghosh ◽  
R. Hijmans ◽  
L. Ndungu

Abstract. Monitoring staple crop production can support agricultural research, business such as crop insurance, and government policy. Obtaining accurate estimates through field work is very expensive, and estimating it through remote sensing is promising. We estimated county-level maize yield for the 37 maize producing countries in Kenya from 2010 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Support Vector Regression (SVR) and Random Forest (RF) were used to fit models with observed county level maize yield as a function of vegetation indices. The following five MODIS vegetation indices were used: green normalized difference vegetation index, normalized difference vegetation index, normalized difference moisture index, gross primary production, and fraction of photosynthetically active radiation. The models were evaluated with 5-fold leave one year out cross-validation. For SVR, R2 was 0.70, the Root Mean Square Error (RMSE) was 0.50 MT/ha and Mean Absolute Percentage Error (MAPE) was 27.6%. On the other hand for RF these were 0.69, 0.51 MT/ha and 29.3% respectively. These results are promising and should be tested in specific applications to understand if they are good enough for use.


2021 ◽  
Vol 46 (4) ◽  
pp. 97-120
Author(s):  
Adisa Folami ◽  
Eberendu Obioha

Major objectives of farm mechanization are to maximize production at minimum risks and optimum cost of equipment usage by good management planning and operation of machines to carry out sequence crop production operations for the whole farming system. Hence this study was needed at Sunti Golden Sugar Company, Nigeria to determine cost of equipment use and select appropriate tractor power and machinery for the crop cultivation, crop establishment, weed control, cane harvesting and transporting to the store for post-harvest processing for future target of 4,770 ha of sugar cane farm. Based on agricultural farm size, field operational planning factors like soil, weather/environmental conditions, each implement matched with appropriate tractor size was calculated. Costs of equipment use, ownership and operational costs for implements and tractors were also calculated. A well-drawn cropping field operations calendar was very important for crop and operational sequencing was recommended and was put in-place since the operations overlaps with multi-periods. As part of the recommendation, during the planned equipment downtime, major repairs and maintenance were to be carried out before critical field operation's period to improve pre-field and in-field efficiency for effective equipment and field operational planning and management. Determined are the values of each implement field capacity within allotted time available, actual number of implement/tractor power required, fuel and oil consumption per unit time for the sugar cane cultivation, harvesting and transporting operations at the sugar cane farm. Also appropriate earth-moving and earthwork equipment for road, irrigation and drainage structural works were also selected.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Jaana Sorvali ◽  
Janne Kaseva ◽  
Pirjo Peltonen-Sainio

AbstractAny new policy measure aiming to mitigate climate change and support adaptation in agriculture is implemented at the farm scale. This makes a farmer the key actor. This study aimed to understand farmers’ climate change views and reveal how farmers see their role, responsibilities and possibilities to mitigate and adapt to climate change. Furthermore, this study aimed to assess how various background variables and values associate with farmers’ views in order to have novel and comprehensive on farmers’ perspectives on climate change. Short-term changes in views were studied with a longitudinal framework. In total, 4401 farmers in Finland answered a standardized e-mail survey in spring 2018. A total of 2000 of them responded again in spring 2020. The respondents differed in gender, age, education, farming system, farm type, farm organization, farm size, revenue and region. The farmers were not a uniform group of citizens, and their views on climate change varied widely. For a Nordic, boreal zone country like Finland, climate change will bring not only challenges but also opportunities that may even strengthen the agricultural production. Such a “two-sided coin” causes confusion for farmers as indicated by this study. Climate change–induced risks often dominate the public dialogue with farmers. This study emphasizes the need for better balance between risks and opportunities not only in the dialogue with farmers but also with policy makers and all public discussion. Acknowledging farmers’ views in planning the future climate policies for agricultural sector is elemental to ensure success in farm-scale implementation.


2021 ◽  
Vol 13 (5) ◽  
pp. 2471
Author(s):  
Ajwal Dsouza ◽  
Gordon W. Price ◽  
Mike Dixon ◽  
Thomas Graham

Controlled environment agriculture (CEA), specifically advanced greenhouses, plant factories, and vertical farms, has a significant role to play in the urban agri-food landscape through provision of fresh and nutritious food for urban populations. With the push towards improving sustainability of these systems, a circular or closed-loop approach for managing resources is desirable. These crop production systems generate biowaste in the form of crop and growing substrate residues, the disposal of which not only impacts the immediate environment, but also represents a loss of valuable resources. Closing the resource loop through composting of crop residues and urban biowaste is presented. Composting allows for the recovery of carbon dioxide and plant nutrients that can be reused as inputs for crop production, while also providing a mechanism for managing and valorizing biowastes. A conceptual framework for integrating carbon dioxide and nutrient recovery through composting in a CEA system is described along with potential environmental benefits over conventional inputs. Challenges involved in the recovery and reuse of each component, as well as possible solutions, are discussed. Supplementary technologies such as biofiltration, bioponics, ozonation, and electrochemical oxidation are presented as means to overcome some operational challenges. Gaps in research are identified and future research directions are proposed.


2020 ◽  
Vol 12 (9) ◽  
pp. 3765 ◽  
Author(s):  
Luís Loures ◽  
Alejandro Chamizo ◽  
Paulo Ferreira ◽  
Ana Loures ◽  
Rui Castanho ◽  
...  

While the world population continues to grow, increasing the need to produce more and better-quality food, climate change, urban growth and unsustainable agricultural practices accelerate the loss of available arable land, compromising the sustainability of agricultural lands both in terms of productivity and environmental resilience, and causing serious problems for the production-consumption balance. This scenario highlights the urgent need for agricultural modernization as a crucial step to face forthcoming difficulties. Precision agriculture techniques appear as a feasible option to help solve these problems. However, their use needs to be reinvented and tested according to different parameters, in order to define both the environmental and the economic impact of these new technologies not only on agricultural production, but also on agricultural sustainability. This paper intends, therefore, to contribute to a better understanding of the impact of precision agriculture through the use of unmanned aerial vehicles (UAV)/remotely piloted aircraft systems (RPAS) and normalized difference vegetation index (NDVI) techniques in small Mediterranean farms. We present specific data obtained through the application of the aforementioned techniques in three farms located along the Portuguese-Spanish border, considering three parameters (seeding failure, differentiated irrigation and differentiated fertilization) in order to determine not only the ecological benefits of these methods, but also their economic and productivity aspects. The obtained results, based on these methods, highlight the fact that an efficient combination of UAV/RPAS and NDVI techniques allows for important economic savings in productivity factors, thus promoting a sustainable agriculture both in ecological and economic terms. Additionally, contrary to what is generally defended, even in small farms, as the ones assessed in this study (less than 50 ha), the costs associated with the application of the aforementioned precision agriculture processes are largely surpassed by the economic gains achieved with their application, regardless of the notorious environmental benefits introduced by the reduction of crucial production inputs as water and fertilizers.


Sign in / Sign up

Export Citation Format

Share Document