scholarly journals Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals

2020 ◽  
Vol 12 (18) ◽  
pp. 7615
Author(s):  
Xiufang Gao ◽  
Shuang Kang ◽  
Rongwei Xiong ◽  
Ming Chen

In the past few decades, many emerging pollutants have been detected and monitored in different water sources because of their universal consumption and improper disposal. Among these, endocrine-disrupting chemicals (EDCs), a group of organic chemicals, have received global attention due to their estrogen effect, toxicity, persistence and bioaccumulation. For the removal of EDCs, conventional wastewater treatment methods include flocculation, precipitation, adsorption, etc. However, there are some limitations on these common methods. Herein, in order to enhance the public’s understanding of environmental EDCs, the definition of EDCs and the characteristics of several typical EDCs (physical and chemical properties, sources, usage, concentrations in the environment) are reviewed and summarized in this paper. In particular, the methods of EDC removal are reviewed, including the traditional methods of EDC removal, photocatalysis, biodegradation of EDCs and the latest research results of EDC removal. It is proposed that photocatalysis and biodegradation could be used as an environmentally friendly and efficient EDC removal technology. Photocatalytic technology could be one of the water treatment methods with the most potential, with great development prospects due to its high catalytic efficiency and low energy consumption. Biodegradation is expected to replace traditional water treatment methods and is also considered to be a highly promising method for efficient removal of EDCs. Besides, we summarize several photocatalysts with high catalytic activity and some fungi, bacteria and algae with strong biodegradability.

2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Ramachandra Reddy Pamuru

Thyroid disorders are common overwhelming health conditions reported worldwide. The prevalence of thyroid disorders such as hypothyroidism and hyperthyroidism is increasing in developed and developing countries including India. This is due to change in traditional foods to Besides low/insufficient iodine intake, smoking, ageing, genetic susceptibility, lifestyle, usage of new medicine, endocrine disrupting chemicals and immune status of an individual are the key determinants for thyroid disorders. This review emphasizes the various disorders of thyroid gland and, its epidemiology and treatment methods.


2020 ◽  
Vol 21 (4) ◽  
pp. 1519 ◽  
Author(s):  
Zi-Run Tang ◽  
Xue-Ling Xu ◽  
Shou-Long Deng ◽  
Zheng-Xing Lian ◽  
Kun Yu

Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 392 ◽  
Author(s):  
Kamil Kayode Katibi ◽  
Khairul Faezah Yunos ◽  
Hasfalina Che Man ◽  
Ahmad Zaharin Aris ◽  
Mohd Zuhair bin Mohd Nor ◽  
...  

Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


Sign in / Sign up

Export Citation Format

Share Document