scholarly journals Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas

2021 ◽  
Vol 13 (8) ◽  
pp. 4159
Author(s):  
Li Zhao ◽  
Tong Heng ◽  
Lili Yang ◽  
Xuan Xu ◽  
Yue Feng

Water scarcity and imbalances in irrigation and drainage are the main factors leading to soil salinization in arid areas. There is a recognized need for effective drainage measures to prevent and improve saline−alkali land. The principal objective of this project was to investigate the effects of drainage measures on soil desalination and farmland drainage in the process of improving saline–alkali soils; these measures included subsurface pipe drainage (SPD) and open ditch drainage (ODD). The results of the tests, conducted over two years, revealed that the soil desalination rate in the SPD test area was between 25.8% and 35.2%, the cotton emergence rate was 36.7%, and a 3.8 t hm−2 seed cotton yield could be obtained. The soil electrolytic conductivity (EC) decreased step by step over time, and the average annual decrease reached 10 dS m−1. The degree of soil salinization was reduced from a moderately saline soil level (8−15 dS m−1) to a weakly saline soil level (4–8 dS m−1). Thus, the phased goal of improving saline–alkali land was achieved. The soil desalination rate in the ODD test area was only 1/10 of the SPD area; high soil EC (9−12 dS m−1) and groundwater level (2–3 m) were the most limiting factors affecting cotton growth in the ODD test area. The current results show that the critical depth of groundwater level affecting farmland secondary salinization is 4 m. In order to improve the salt discharge standard, SPD technology should be used on the basis of ODD. For salt that has accumulated in the soil for a long time, the technical mode of drip irrigation and leaching, followed by SPD drainage, in combination with the current irrigation system can achieve the goal of sustainable agriculture development.

2021 ◽  
pp. 5-48
Author(s):  
E. I. Kravchenko ◽  
N. B. Khitrov ◽  
I. N. Gorokhova

The current state of salinity of irrigated soils in the area of the Sarpinskaya hollow in the Caspian lowland has been studied, using the example of the Duboovrazhny irrigated plot in the Volgograd region. At the peak of irrigation in the 85-90s of the last century, forage grasses were cultivated on the plot, irrigation was carried out by sprinkler irrigation, the groundwater level remained satisfactory, and there were no foci of secondary soil salinization. Currently, the plot is a private farm, where melons and vegetables are grown using drip irrigation, the groundwater level remains satisfactory with local formation of temporal water saturated layer. To identify the features of the process of salinization in irrigated soils in the Sarpinskaya hollow based on the materials of the field work performed in 2018–2019, a model of two-dimensional distribution (depth, distance) of the activity of ions (Ca2+, Cl–, Na+) over several profiles along weakly concave low ranges and elongated hollows between them and across relief wave was created. It was revealed that natural soil salinization predominates in the study plot mainly deeper than 1 m, and results from shallow bedding of Khvalynian chocolate clays at ranges. Solonchakous soils occur in elongated hollows between ranges where surface and subsurface runoff water is accumulated and natural drainability is low. Residual traces of soil secondary salinization expressed in the presence of calcium chloride in the soil solution were found. The maximum values of salts and exchangeable sodium are concentrated in the deeper part of the soil profile. 


2019 ◽  
Vol 11 (14) ◽  
pp. 1700 ◽  
Author(s):  
Suming Zhang ◽  
Gengxing Zhao

Soil salinization adversely impacts crop growth and production, especially in coastal areas which experience serious soil salinization. Therefore, rapid and accurate monitoring of the salinity and distribution of coastal saline soil is crucial. Representative areas of the Yellow River Delta (YRD)—the Hekou District (the core test area with 140 sampling points) and the Kenli District (the verification area with 69 sampling points)—were investigated. Ground measurement data, unmanned aerial vehicle (UAV) multispectral imagery and Sentinel-2A multispectral imagery were used as the data sources and a satellite-UAV-ground integrated inversion of the coastal soil salinity was performed. Correlation analyses and multiple regression methods were used to construct an accurate model. Then, a UAV-based inversion model was applied to the satellite imagery with reflectance normalization. Finally, the spatial and temporal universality of the UAV-based inversion model was verified and the soil salinity inversion results were obtained. The results showed that the green, red, red-edge and near-infrared bands were significantly correlated with soil salinity and the spectral parameters significantly improved this correlation; hence, the model is more effective upon combining spectral parameters with sensitive bands, with modeling precision and verification precision of the best model being 0.743 and 0.809, respectively. The reflectance normalization yielded good results. These findings proved that applying the UAV-based model to reflectance normalized Sentinel-2A images produces results that are consistent with the actual situation. Moreover, the inversion results effectively reflect the distributions characteristic of the soil salinity in the core test area and the study area. This study integrated the advantages of satellite, UAV and ground methods and then proposed a method for the inversion of the salinity of coastal saline soils at different scales, which is of great value for real-time, rapid and accurate soil salinity monitoring applications.


2021 ◽  
Vol 15 (1) ◽  
pp. 1147-1158
Author(s):  
Shahab S. Band ◽  
Essam Heggy ◽  
Sayed M. Bateni ◽  
Hojat Karami ◽  
Mobina Rabiee ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Monther T. Sadder ◽  
Ahmad F. Ateyyeh ◽  
Hodayfah Alswalmah ◽  
Adel M. Zakri ◽  
Abdullah A. Alsadon ◽  
...  

Abstract Low-quality water and soil salinization are increasingly becoming limiting factors for food production, including olive – a major fruit crop in several parts of the world. Identifying putative salinity-stress tolerance in olive would be helpful in the future development of new tolerant varieties. In this study, novel salinity-responsive biomarkers (SRBs) were characterized in the species, namely, monooxygenase 1 (OeMO1), cation calcium exchanger 1 (OeCCX1), salt tolerance protein (OeSTO), proteolipid membrane potential modulator (OePMP3), universal stress protein (OeUSP2), adaptor protein complex 4 medium mu4 subunit (OeAP-4), WRKY1 transcription factor (OeWRKY1) and potassium transporter 2 (OeKT2). Unique structural features were highlighted for encoded proteins as compared with other plant homologues. The expression of olive SRBs was investigated in leaves of young plantlets of two cultivars, ‘Nabali’ (moderately tolerant) and ‘Picual’ (tolerant). At 60 mM NaCl stress level, OeMO1, OeSTO, OePMP3, OeUSP2, OeAP-4 and OeWRKY1 were up-regulated in ‘Nabali’ as compared with ‘Picual’. On the other hand, OeCCX1 and OeKT2 were up-regulated at three stress levels (30, 60 and 90 mM NaCl) in ‘Picual’ as compared to ‘Nabali’. Salinity tolerance in olive presumably engages multiple sets of responsive genes triggered by different stress levels.


Author(s):  
Wendong Zhu ◽  
Xiaobin Li ◽  
Shide Dong ◽  
Yaohu Kang ◽  
Guangxu Cui ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3289
Author(s):  
Rongchao Shi ◽  
Ling Tong ◽  
Taisheng Du ◽  
Manoj K. Shukla

Research is imperative to predict seed vigor of hybrid maize production under water deficit in arid areas. Field experiments were conducted in 2018 and 2019 in arid areas of northwestern China to investigate the effects of different irrigation strategies at various growth stages with drip irrigation under film mulching on grain yield, kernel weight, seed protein content, and seed vigor of hybrid maize (Zea mays L.). Water deficit at vegetative, flowering, and grain-filling stages was considered and a total of 16 irrigation treatments was applied. A total of 12 indices of germination percentage, germination index (GI), shoot length (SL), and root length (RL) under different germination conditions (standard germination and accelerated aging); electrical conductivity (EC) of the leachate; and activities of peroxidase, catalase, and superoxide dismutase in seeds were measured and analyzed using the combinational evaluation method (CEM). Furthermore, five water production functions (Blank, Stewart, Rao, Jensen, and Minhas) were used to predict seed vigor evaluated by CEM under water deficit. The results showed that leachate EC was higher under water deficit than that under sufficient irrigation. The SL, RL, and GI of different germination conditions increased under water deficit at the flowering stage. The Rao model was considered the best fitted model to predict the vigor of hybrid maize seeds under water deficit, and an appropriate water deficit at the flowering stage is recommended to ensure high seed vigor of hybrid maize production with drip irrigation under film mulching. Our findings would be useful for reducing crop water use while ensuring seed vigor for hybrid maize production in arid areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Linlin Chu ◽  
Yaohu Kang ◽  
Shuqin Wan

Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.


Sign in / Sign up

Export Citation Format

Share Document