scholarly journals Characteristics of Clay Raw Materials from the Turów Lignite Mine Waste, Poland: Potential for Industrial Applications

2021 ◽  
Vol 13 (12) ◽  
pp. 6513
Author(s):  
Jan Kudełko ◽  
Herbert Wirth ◽  
Wojciech Kaczan ◽  
Lesław Bagiński

Considering the diversity of clay raw materials, we can distinguish their numerous varieties using genesis and retention conditions, as well as specific physical, chemical, and thermal properties as criteria of division. Three samples of fine-grained clay materials, collected randomly from the Turów lignite mine tailing piles, were subjected to testing for their grain and chemical composition and specific surface area. The results show that the tested materials are non-porous adsorbents. Additionally, a thermal analysis was carried out with a simultaneous quadrupole mass spectrometry (QMS). In the tested samples, the weight loss associated with the release of water from the clay was observed in two temperature ranges: from 40 to 240 °C (physically bound water) and from 330 to 620 °C (structured water). The weight loss associated with the decomposition of organic matter was registered in the temperature range of 300 to 560 °C. The results of the conducted tests might provide the basis for further analysis of the potential use of these materials as heat stores, components of insulators, or additives of ceramic products.

2021 ◽  
Vol 40 ◽  
pp. 02001
Author(s):  
Nina Myachikova

Pleurotus Ostreatus mushrooms are used as raw materials for public catering establishments. Features of the technological properties of this mushrooms affect the composition of operations and their parameters during mechanical processing and the choice of methods and features of thermal processing. Taking into account the peculiarities of the growth of this mushrooms and their morphological structure, a scheme of mechanical processing is presented. The duration and weight loss were determined for various methods of heat treatment. It was found that the weight loss during heat treatment decreases with an increase in the dry matter content. There is an inverse relationship between the content of bound water and the loss of mass: with an increase in the proportion of bound water, the mass loss during heat treatment decreases. It means that the weight loss during heat treatment of mushrooms is due to the loss of free water. Therefore when assessing the quality of raw materials at the stage of incoming control, it is necessary to control the content of dry matter in mushrooms, and take this indicator into account when developing formulations and establishing technological parameters, namely, losses during heat treatment.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


2018 ◽  
Vol 15 (2) ◽  
pp. 147-156
Author(s):  
Rebeka Rudolf ◽  
Urban Ferčec ◽  
Mohammed Shariq

Background: This review provides a closer look at recent work in the field of fireworks manufacture, which could see the replacement of micron-sized particles with their nano-scaled counterparts. Moreover, we also discuss micron-sized particles as well as nanoparticles (NPs) from K, Fe, Al, Ti, Ba, etc., that are produced in the atmosphere as a result of these fireworks. One of the possible technological substitutes for fireworks is presented in detail, i.e., the use of ultrasonic spray pyrolysis (USP) technology. Method: We searched Google, Web of Science and PubMed for a literature survey of fireworks and their products: firecrackers, micron-sized and nanoparticles. Moreover, we used some of our own knowledge and experimental data to strengthen the possibility of simulating the synthesis of firework products on the laboratory scale. Results: The use of nano reactants and oxidisers has seen a substantial increase in the sound efficiency and a decrease in the amount of chemicals used, making fireworks more eco-friendly. The application of Al- and Ti-based nano flash powder in the size range from 35 nm to 50 μm resulted in a significant improvement in the ignition properties of the fireworks. Under changing aerodynamic conditions, it is difficult to collect them as samples for real-time monitoring, needed for their characterization or the testing of their harmfulness under laboratory conditions. As a result, NPs below 100 nm in the surroundings could be easily inhaled into the lungs and cause more pulmonary and respiratory problems than micron-sized particles. USP produces nanoparticles in the laboratory that could replace the conventional micron-sized firecracker raw materials, or nanoparticles that are similar to those formed by fireworks. It will also help to identify the physiochemical properties of the airborne particulates in order to understand and evaluate their impact. </P><P> This review could be valuable for a controlled economic synthesis through USP, and in the use of nanopowders in pyrotechnology that could reduce pollution to a great extent, thus contributing to the growth and good practise of the fireworks industry. With respect to the USP synthesis, we have also discussed in detail the physical (size, shape) and chemical (composition) characteristics of Al2O3 and TiO2 NPs from different precursors and their temperature ranges. An in-depth explanation for a comparative analysis for the formation mechanism of nanoparticles through both fireworks and USP is presented in the final section. We can produce nanoparticles in the laboratory with ultrasonic spray pyrolysis that have similar properties to those produced from fireworks and can then be used for further testing.


2021 ◽  
Vol 11 (4) ◽  
pp. 16-23
Author(s):  
Piotr Wrona ◽  
Wojciech Panna ◽  
Stanisław Lipiński ◽  
Maciej Woźniak

Bentonites and other smectite raw materials are widely used in many industries. The authors of the study analyzed the suitability of swelling granulates for their use as a seals in mobile flood barriers. For this purpose, a comparative analysis of the swelling and granulation parameters of three samples available on the market was performed. This results was compared with a macroscopic swelling test, which was realized on the specially prepared test stand. The carried out research shows that not only the content of the swelling minerals – mainly smectite – affect on the sealing of the system, but also they are determine by granules size distribution and the type of smectite.


Author(s):  
I. Kaltovich

The article presents the results of research on the determination of rational technological parameters for the production of chopped semi-products using emulsions from collagen-containing raw materials fermented by bacteria of the genus Lactobacillus. Water dosages are installed in the composition of chopped semi-finished products: 12% – with emulsions from pork skin and tails and 11% - with emulsion from connective tissue. Duration of ingredients mixing (5 minutes), sequence of raw materials laying during manufacture of articles, as well as duration of heat treatment of chopped semiproducts is determined: 25 minutes – during steaming (t = 95–100 °С), 20 minutes – during baking (t = 180 °C), 15 minutes – during frying (t = 110 °C), while recommended methods of bringing semifinished products to culinary readiness are steam treatment and baking, which allow for improved functional and technological (TUS – 79.3-81.8%, weight loss during heat treatment – 5.1–7.9%), structural and mechanical (PNS - 1413.9–1470.4 Pa) and organoleptic indicators (juiciness, appearance, consistency, taste, smell) of these products (9 points according to the 9-point system).


Geologos ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Lilianna Chomiak

AbstractThe present article focuses predominantly on sandy deposits that occur within the Middle Miocene lignite seam at the Tomisławice opencast mine, owned by the Konin Lignite Mine. As a result of mining activity, these siliciclastics were available for direct observation in 2015–2016. They are situated between two lignite benches over a distance of ~500 m in the lower part and ~200 m in the higher part of the exploitation levels. The maximum thickness of these sandy sediments, of a lenticular structure in a S–N cross section, is up to 1.8 m. With the exception of a thin lignite intercalation, these siliciclastics comprise mainly by fine-grained and well-sorted sands, and only their basal and top layers are enriched with silt particles and organic matter. Based on a detailed analysis of the sediments studied (i.e., their architecture and textural-structural features), I present a discussion of their genesis and then propose a model of their formation. These siliciclastics most likely formed during at least two flood events in the overbank area of a Middle Miocene meandering or anastomosing river. Following breaching of the natural river levee, the sandy particles (derived mainly from the main river channel and levees) were deposited on the mire (backswamp) surface in the form of crevasse splays. After each flooding event, vegetation developed on the top of these siliciclastics; hence, two crevasse-splay bodies (here referred to as the older and younger) came into existence. As a result, the first Mid-Polish lignite seam at the Tomisławice opencast mine is currently divided in two by relatively thick siliciclastics, which prevents a significant portion of this seam from being used for industrial purposes.


2021 ◽  
Vol 4 (2) ◽  
pp. 12-18
Author(s):  
D.A. Tolypin ◽  
N. Tolypina

the article proposes a rational method for processing 3D printing concrete scrap using vibration equipment, which allows obtaining a multicomponent building material with minimal electricity consumption. As a crite-rion for the degree of grinding of concrete scrap, it is proposed to use the specific surface area of the finely dispersed part of concrete scrap, which should correspond to 400-500 m2/kg. The possibility of reusing the resulting product instead of the traditional fine aggregate of quartz sand is shown. It was found that the con-crete scrap without the addition of Portland cement hardens, reaching up to 48% of the compressive strength of the control samples by 28 days. When 10% of the binder CEM I 42.5 N was added to the concrete scrap processing product, the compressive strength of fine-grained concrete increased by 106.6%, and 20% of Portland cement - by 112.2 %, compared to the strength of control samples of a similar composition on tra-ditional quartz sand after 28 days of hardening. It is noted that this is primarily due to the weak contact zone of quartz sand and the cement matrix of concrete. The use of the product of processing concrete scrap al-lows obtaining building composites based on it with the complete exclusion of natural raw materials


2006 ◽  
Vol 503-504 ◽  
pp. 287-292 ◽  
Author(s):  
D. Nagarajan ◽  
Chakkingal Uday ◽  
P. Venugopal

Severe plastic deformation processes like equal channel angular extrusion (ECAE) have been widely investigated for their ability to produce nano/ ultra fine-grained microstructures. It is well known that submicron sized grains/ sub grains can be produced in most Al alloys using this technique. However, industrial applications of ECAE will depend heavily on the advantages conferred by this process when it is used as an intermediate processing step prior to conventional forming. In the current investigation, the influence of pre processing by ECAE on subsequent post processing by conventional cold extrusion has been investigated. ECAE extrusion was carried out on cylindrical specimens of AA 6101 using an ECAE die with a die angle of 120 degrees. Extrusion was carried out for three passes using two different processing routes. The ECA extruded specimens were subsequently subjected to conventional cold extrusion. The differences in extrusion pressures, which have a strong influence on industrial applications, were noted. Changes in microstructure and mechanical properties were also determined. The obtained results of mechanical properties and microstructure evaluation show that for high strains (strain ε ≈ 2.01), ECAE through some processing routes can be effectively used as an intermediate processing step prior to conventional cold extrusion to obtain a product with enhanced mechanical properties.


2014 ◽  
Vol 535 ◽  
pp. 734-737 ◽  
Author(s):  
Qian Liu ◽  
De Kui Shen

Fractionated pyrolysis of biomass and its three main components (viz. hemicellulose, cellulose and lignin) was carried out on a thermogravimetric analyzer, which effectively separated the pyrolysis progress of different compositions. Three temperature ranges of 40-300 °C, 300-400 °C and 400-700 °C were presented with hemicellulose, cellulose and lignin as the dominant component, respectively. Fir contains much more cellulose and lignin than rice straw, and thus the weight loss in 300-400 °C is much higher, as 66.4% of the total weight loss. Rice straw contains more extractives and hemicellulose, resulting in higher mass loss in the early pyrolysis stage of 40-300 °C. The pyrolysis of biomass was predicted by hemicellulose, cellulose and lignin according to the additivity law, and the fractionated pyrolysis showed good performance in the prediction of volatile and residue yields of wood biomass. The interactions of biomass components were revealed to be unneglectable.


2021 ◽  
Vol 1 (2) ◽  
pp. 25-31
Author(s):  
HS Siddesha ◽  
Suhaaskapardhi BS ◽  
Goutham C

Severe Plastic Deformation (SPD) processes are for developing ultrafine grained (UFG) structured materials for different Industrial applications. Cyclic Constrained Groove Pressing (CCGP) is a technique, produce fine grained structures in metallic sheets or plates in mass production. The objective of research work is to investigate the influence of CCGP processing on the super plastic behaviour of an Aluminium alloy. Samples in “ascast” materials processed by CCGP with as cast, 1, 2, 3 and 4 passes. Processed Material study for microhardness and Tensile strength mechanical properties test were done for different test specimens. Grain refinement, microhardness and Tensile strength increased with the number of CCGP passes.


Sign in / Sign up

Export Citation Format

Share Document