scholarly journals Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield

2021 ◽  
Vol 13 (21) ◽  
pp. 11766
Author(s):  
Sushil Thapa ◽  
Ammar Bhandari ◽  
Rajan Ghimire ◽  
Qingwu Xue ◽  
Fanson Kidwaro ◽  
...  

Plants need only a small quantity of micronutrients, but they are essential for vital cell functions. Critical micronutrients for plant growth and development include iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), chlorine (Cl), and nickel (Ni). The deficiency of one or more micronutrients can greatly affect plant production and quality. To explore the potential for using micronutrients, we reviewed the literature evaluating the effect of micronutrients on soybean production in the U.S. Midwest and beyond. Soil and foliar applications were the major micronutrient application methods. Overall, studies indicated the positive yield response of soybean to micronutrients. However, soybean yield response to micronutrients was not consistent among studies, mainly because of different environmental conditions such as soil type, soil organic matter (SOM), moisture, and temperature. Despite this inconsistency, there has been increased pressure for growers to apply micronutrients to soybeans due to a fact that deficiencies have increased with the increased use of high-yielding cultivars. Further studies on quantification and variable rate application of micronutrients under different soil and environmental conditions are warranted to acquire more knowledge and improve the micronutrient management strategies in soybean. Since the SOM could meet the micronutrient need of many crops, management strategies that increase SOM should be encouraged to ensure nutrient availability and improve soil fertility and health for sustainable soybean production.

2021 ◽  
Vol 6 (1) ◽  
pp. 80-86
Author(s):  
Hillary M.O. Otieno ◽  
Edna K. Mageto

Potato productivity has stagnated and remained low due to, among other causes, increasing soil infertility and poor nutrient management strategies. To avert this situation, it is essential to have a better understanding of potato response to nitrogen and potassium nutrients. Like other crops, potatoes require an adequate and balanced supply of nutrients for better growth and tuber yields. To achieve that, it is essential to conduct an extensive soil analyses for the entire farm. However, this process is expensive for most resource-constrained farmers. Moreover, the current recommendations used in the region are generic and focuses more on nitrogen than potassium. Hence, there is a need to focus on readily and freely available information for enhanced decision making. The assumption that the soils in the region are fertile and can supply adequate potassium is no longer valid, and now necessitates more actions such as adopting integrated soil fertility and precise application of nutrients within the 4R principles. All these aspects are well covered in this article. We believe the information presented in this manuscript is valuable and give a better foundation for future research and recommendations in potato production.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Douglas D. Buhler ◽  
Jeffery L. Gunsolus ◽  
Donald F. Ralston

Common cocklebur is a very competitive and difficult to control weed species in soybean production. Field research was conducted at Rosemount, MN, from 1989 to 1991 to evaluate reduced rates of bentazon applied broadcast or banded over the crop row in combination with interrow cultivation for common cocklebur control in soybean. Bentazon at 0.6 kg ai ha−1applied in a 38-cm-wide band over the soybean row followed by two cultivations controlled almost 90% of the common cocklebur when environmental conditions were favorable, and the majority of the common cocklebur emerged prior to bentazon application. However, when precipitation was below normal prior to bentazon application and a high proportion of the common cocklebur emerged after the initial bentazon application, sequential bentazon treatments controlled more common cocklebur and resulted in greater soybean yields than combinations of bentazon plus cultivation. Differences in soybean yield were attributed to differences in common cocklebur control rather than injury from cultivation or bentazon.


2015 ◽  
Vol 5 (1) ◽  
pp. 606-620
Author(s):  
Mahtali Sbih ◽  
Zoubeir BENSID ◽  
Zohra BOUNOUARA ◽  
Fouad DJAIZ ◽  
Youcef FERRAG

The goal of fertilization is to meet the nutritional needs of plants by completing the supply of soil nutrients in an economically profitable and environmentally friendly. Achieving on-farm optimum economic crop yields of marketable quality with minimum adverse environmental impact requires close attention to fertilization guide. The recommendations seek to do this by ensuring that the available supply of plant nutrients in soil is judiciously supplemented by additions of nutrients in fertilizers. The objective is that crops must have an adequate supply of nutrients, and many crops show large and very profitable increases in yield from the correct use of fertilizers to supply nutrients. The main objective of this work is to establishing a reference guide of fertilization of vegetable crops and cereal in Algeria. To meet this objective, we have processes in two steps: 1) Establishment of theoretical fertilizer recommendation from international guide of crop fertilization; 2) Validation of these developed theoretical fertilizer recommendation by trials in the fields. Sixteen fertilization guides of vegetable crops from the Canadian provinces (5 guides), USA (10 guides) and countries of northern Europe England (1 guide). Generally, the rating of these recommendation is ranging from poor soil to soil exceedingly rich; however, the numbers of fertility classes are very different. Indeed, Quebec Ontario, Minnesota, Wisconsin New England, Maryland and Kentucky and Florida guides are subdivided into 5 fertility classes, ranging from poor soil to soil exceedingly rich. The recommendation of New Brunswick and Manitoba contain six classes. The recommendation of Michigan, Nova Scotia and England contain 10 and 7 fertility classes respectively. The recommendation fertilizer of New York and New Jersey have 3classes. Unlike the systems of fertilization recommendation mentioned above, the recommendation fertilizer of Pennsylvania is based on continuous models of P, K and contains 34 classes for P and 22 classes K. Then we standardized the P soil analysis with conversion equations (Olsen method) and units of measurement (kg/ha, mg/kg…).Following this procedure we transformed discontinued systems of fertility classes in to continuous models to facilitate comparison between the different fertilization recommendation models in one hand, in other hand to obtain critical value (CV).Finally, we used statistics of the conditional expectation in order to generate the theoretical recommendation fertilization guide of fertilization with 7 fertility classes (VL, L, M, MH, OP, H and VH). The next step was calibrating soil tests against yield responses to applied nutrient in field experiments. A database (not published data) from agriculture and agri-food Canada, were used. Production of pumpkin responded positively and significantly to P or K soil fertility levels, increases being observed with P more often than with K. According to the Cate-Nelson methods, the critical value of Olsen-P in the top 20 cm of soil was about 25 mg/kg: at values of greater than or equal to 25 mg/kg, crops achieved about 80% of their maximal yield in the absence of fertilizer application. The CV of K in soil for this crop was about 140 mg/kg. The CV found was very close to this generated by the theoretical method for recommendation of fertilization guide. Finally, we used the procedure of Cope and Rouse in both sides of the CV in order to make subdivisions of different groups of soil fertility. One calibrates the soil-test value against yield response to tile nutrient to predict fertilizer requirement.


ael ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yogendra Y. Raut ◽  
Vinayak S. Shedekar ◽  
Khandakar R. Islam ◽  
Javier M. Gonzalez ◽  
Dexter B. Watts ◽  
...  

Author(s):  
Ю.В. Суркова ◽  
И.Н. Цымбаленко ◽  
С.Д. Гилев

Представлена комплексная оценка эффективности диверсификации севооборотов, а также способов обработки почвы и влияния азотных удобрений при возделывании сои в условиях засушливого климата центральной лесостепной зоны Зауралья. По результатам исследований, проведённых в 2010–2020 годах в Курганском НИИСХ – филиале УрФАНИЦ УрО РАН, установлено влияние гидротермических условий региона и агротехнических приёмов на формирование урожайности сои. В острозасушливые годы с гидротермическим коэффициентом 0,3–0,6 урожайность сои снижалась наполовину по сравнению с благоприятными по тепло- и влагообеспеченности периодами (ГТК — 1,1–1,2). На фоне удобрений и надёжной системы защиты посевов сои от сорных растений менее затратная поверхностная обработка по урожайности не уступала вспашке. Минеральный азот в дозе N30 на фоне средней обеспеченности почвы подвижным фосфором в острозасушливые годы обеспечил прибавку зерна сои 0,28 т/га, в благоприятные по условиям увлажнения годы прибавка от применения N30 увеличилась до 0,43 т/га. Диверсификация традиционного четырёхпольного зернопарового севооборота путём замены пшеничного поля посевами сои обеспечила повышение продуктивности, улучшение качества продукции и экономических показателей. Рентабельность производства продукции с севооборотной площади в вариантах с ресурсосберегающей поверхностной обработкой выросла до 110% без удобрений и до 117% — на фоне N30 против 49 и 66% в зернопаровом севообороте. В результате многолетних исследований в контрастных погодных условиях установлено, что производство сои в полевом севообороте в центральной лесостепной зоне Зауралья рентабельно даже в острозасушливые годы. При низком уровне урожайности (0,50–0,70 т/га) рентабельность составляет 30–50%. В благоприятные годы ресурсы зауральского климата позволяют получать урожайность сои на уровне 1,40–1,80 т/га. При этом рентабельность повышается до 220%. The report deals with the optimization of a rotation system as well as the effect of tillage and nitrogen fertilizers on soybean productivity under the drought of the central forest-steppe in Trans-Urals. The investigation was conducted at the Kurgan Research Institute of Agriculture in 2010–2020. The aim was to test the effect of tillage, moisture and temperature on soybean yield. Drought (hydrothermal coefficient of 0.3–0.6) reduced soybean productivity by 50% in comparison to favorable conditions (hydrothermal coefficient of 1.1–1.2). Less expensive surface tillage was as effective as plowing under fertilization and weed control. In dry years application of N30 increased grain yield by 0.28 t ha-1 under medium content of soluble P. Under favorable conditions the increase amounted to 0.43 t ha-1. Substitution of wheat with soybean in the conventional four-field crop rotation system resulted in higher crop productivity, yield quality and economic effectiveness. Payback raised up to 110% under surface tillage and no fertilization and 117% — on the background of N30 versus 49 and 66% obtained under fallow and grain crop rotation. Soybean production was cost-effective even under drought. Low soybean yield (0.50–0.70 t ha-1) resulted in profitability of 30–50%. Favorable conditions of the region provided soybean yield of 1.40–1.80 t ha-1, increasing profitability up to 220%.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.


2016 ◽  
Vol 34 (3) ◽  
pp. 195
Author(s):  
Bambang S. Koentjoro ◽  
Imas S. Sitanggang ◽  
Abdul Karim Makarim

<p>The prediction of national soybean yield and production could be improved its accuracy by integrating a simulation model and Geographic Information Systems (GIS). The objective of this research was to integrate a simulation model with a GIS, to predict the potential yield and production of soybean in the soybean production centers of East Java. This study was conducted from December 2013 till May 2014. The approach used in this study was a systems approach using a simulation model as solution to the problem. The model is SUCROS.SIM (Simple Universal Crops Growth Simulator), which was written using Powersim software and Spreadsheet in order to be fully integrated with GIS. The initial phase of the integration process between SUCROS.SIM and GIS are as follows (a) model validation, using input data of soybean plant assimilate partitioning, (b) climatic data (solar radiation, maximum and minimum temperatures) collected from the climatological station (BMKG) Karangploso Malang and (c) observation data of soybean yields of two varieties (Wilis and Argomulyo) at Muneng Experiment Station. It was found that the coefficients of determination of simulation model of soybean yield potential (R2) range from 0.945-0.992 and RMSE (Root Mean Square Error) values range from 0.11 to 0.25 t/ha. The average of soybean yield potential and production in 2012 at soybean production centers of East Java were 1.94 t/ha and 293,459 ton, respectively. The conclusion is SUCROS.SIM valid to be integrated with GIS.</p>


2020 ◽  
Vol 15 (4) ◽  
pp. 365-371
Author(s):  
Deepayan Debnath ◽  
◽  
Suresh Babu ◽  

There is a significant soybean yield gap in sub-Saharan African (SSA) countries. Sustainable intensification of the agricultural sector to reduce such a yield gap is important. Increasing soybean productivity can meet the growing demand for food and feed when complemented with higher soy meal demand by the local livestock industry. This study performs an ex-ante economic analysis to determine the effect of higher soybean production on trade and land use within SSA countries. We find that increasing soybean yield by 50% can increase the total returns from soybean production by 186 million LC (local currency) in Ethiopia and 36 billion LC in Nigeria. We show that soybean yield growth alone is enough to boost soy oil production, as the crushing of the beans produces 18% oil and 79% meal. While increasing productivity may lead to freeing land to produce high-valued cash crops, investors will be reluctant to invest in the crushing facilities in the absence of soy meal demand by the livestock industry. Therefore, policymakers need to establish collaboration between development organisations, private companies, farmers and researchers to achieve this transformation and thereby raise agricultural productivity.


2020 ◽  
Author(s):  
Rosalind F. Roberts ◽  
Andrew N. Bayne ◽  
Thomas Goiran ◽  
Dominique Lévesque ◽  
François-Michel Boisvert ◽  
...  

ABSTRACTThe generation of mitochondrial-derived vesicles (MDVs) is implicated in a plethora of vital cell functions, from mitochondrial quality control to peroxisomal biogenesis. The discovery of distinct subtypes of MDVs has revealed the selective inclusion of mitochondrial cargo in response to varying stimuli. However, the true scope and variety of MDVs is currently unclear, and unbiased approaches have yet to be used to understand their biology. Furthermore, as mitochondrial dysfunction has been implicated in many neurodegenerative diseases, it is essential to understand MDV pathways in the nervous system. To address this, we sought to identify the cargo in brain MDVs. We used an in vitro budding assay and proteomic approach to identify proteins selectively enriched in MDVs. 72 proteins were identified as MDV enriched, of which 31% were OXPHOS proteins. Interestingly, the OXPHOS proteins localized to specific modules of the respiratory complexes, hinting at the inclusion of sub-assemblies in MDVs. Small TIM chaperones were also highly enriched in MDVs, linking mitochondrial chaperone-mediated protein transport to MDV formation. As the two Parkinson’s disease genes PINK1 and Parkin have been previously implicated in MDV biogenesis in response to oxidative stress, we compared the MDV proteomes from the brains of wild-type mice with those of PINK1-/- and Parkin-/- mice. No significant difference was found, suggesting that PINK1- and Parkin-dependent MDVs make up a small proportion of all MDVs in the brain. Our findings demonstrate a previously uncovered landscape of MDV complexity and provide a foundation from which to discover further novel MDV functions.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Sahrish Khan ◽  
Abdul Waris

Due to increase in the population which is estimated that the human papulation will increased 9.7 billion in 2050. There is also increase the demands of the food productions. That’s why there is need to solve the problems regarding to the production of the food. Major problem of the food production is the shortage of the land due to the low and bad soil structure and quality of the soil. Soil erosion is one of the main issue which is caused  due to the used of different chemicals, pesticides and fertilizers which are mainly used for the  plant growth and protection but they are the main reasons of the production of the pollution in the soil. There is need of the different new technology for the improvement of the soil structure, quality, its fertility and decontamination of pollution from the soil which are eco-friendly to the environment and have no adverse effect. In this study the role of the different techniques in which genetic engineering, Nano technologies, soil and crop management strategies, integrated pest control management strategies, sustainable remediation techniques, microbial management strategies and the different management stairgates. All these techniques aim to the production of the plants and microbes which are effective against plant disease management. The aim of the use nano agrochemicals and nano sensors for sensing environmental and pathogen conditions against disease management. The aim of the paper to provide the production of the disease resistance plant and the provide balanced nutrients supplements to the soil for the improvement of the soil condition and its fertility. These techniques have economic importance due to the use of the nano agrochemicals which are low cost and have effective and reduce the use of the chemicals substances which have negative effect on the  soil fertility.. There are sustainable remediations techniques also discussed which are used for the decontamination of the soil pollution. In this study the main focus on the improve and increase soil fertility which enhance the growth of the plants as well the production of the crop production. The production of the stress and degradation resistance microbes which is important factor for the protection of the soil from degradation or contamination. All the techniques which are used in this paper have no adverse effect they are helpful in the tolerance of the stress conditions.


Sign in / Sign up

Export Citation Format

Share Document