scholarly journals Study on Combustion Characteristics and Thermodynamic Parameters of Thermal Degradation of Guinea Grass (Megathyrsus maximus) in N2-Pyrolytic and Oxidative Atmospheres

2021 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Ayokunle O. Balogun ◽  
Adekunle A. Adeleke ◽  
Peter P. Ikubanni ◽  
Samuel O. Adegoke ◽  
Abdulbaset M. Alayat ◽  
...  

This study provides an extensive investigation on the kinetics, combustion characteristics, and thermodynamic parameters of the thermal degradation of guinea grass (Megathyrsus maximus) in N2-pyrolytic and oxidative atmospheres. A model-fitting technique and three different iso-conversional techniques were used to investigate the kinetics of the thermal process, after which an analysis of the combustion characteristics and thermodynamic parameters was undertaken. Prior to this, experiments on the physico-chemical characterization, thermogravimetric, and spectroscopic analyses were carried out to provide insight into the compositional structure of the guinea grass. The volatile matter, fixed carbon, and total lignin contents by mass were 73.0%, 16.1%, and 21.5%, respectively, while the higher heating value was 15.46 MJ/kg. The cellulose crystallinity index, determined by XRD, was 0.43. The conversion of the GG in air proceeded at a relatively much higher rate as the maximum mass-loss rate peak in a 20 K/min read was −23.1 and −12.3%/min for the oxidative and the pyrolytic, respectively. The kinetics investigation revealed three distinctive stages of decomposition with their corresponding values of activation energy. The average values of activation energy (FWO) at the latter stages of decomposition in the pyrolytic processes (165 kJ/mol) were higher than those in the oxidative processes (125 kJ/mol)—an indication of the distinctive phenomenon at this stage of the reaction. The Coats–Redfern kinetic model revealed that chemical reactions and diffusional models played a predominant role in the thermal decomposition process of the GG. This study showed that the thermodynamic parameters varied with the conversion ratio, and the combustion performance increased with the heating rates. The use of GG as an energy feedstock is recommended based on the findings from this work.

2019 ◽  
Vol 38 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Ghulam Ali ◽  
Jan Nisar ◽  
Munawar Iqbal ◽  
Afzal Shah ◽  
Mazhar Abbas ◽  
...  

Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin−1, 10°Cmin−1, 15°Cmin−1 and 20°Cmin−1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats–Redfern) and model free methods (Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats–Redfern, Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose and Friedman models were found in the ranges 105–148.48 kJmol−1, 99.41–140.52 kJmol−1, 103.67–149.15 kJmol−1 and 99.93–141.25 kJmol−1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.


2016 ◽  
Vol 36 (9) ◽  
pp. 917-931 ◽  
Author(s):  
Gaurav Madhu ◽  
Dev K. Mandal ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai

Abstract The effect of adding poly(L-lactic acid) (PLLA) with and without a pro-oxidant additive cobalt stearate (CoSt) and compatibilizer maleic anhydride grafted polyethylene (MA-g-PE) on the thermal degradation and stability of high-density polyethylene (HDPE) films was analyzed using thermogravimetric analysis (TGA). The kinetic parameters [i.e. activation energy (Ea), order of reaction (n), and frequency factor ln(A)] of the samples were studied over a temperature range of 25°C–600°C at four heating rates (i.e. 5, 10, 15, and 20°C/min) through model-free techniques (e.g. Friedman, second Kissinger, and Flynn-Wall-Ozawa) and model-fitting techniques (e.g. Freeman-Carroll and Kim-Park). The value of Ea for neat HDPE was found to be much higher than PLLA; for the HDPE/PLLA blend, it was nearer to that of HDPE. An increase in the activation energy of 80/20 (HDPE/PLLA) blend was noticed by the addition of MA-g-PE. The TGA data and degradation kinetics were also used to predict the lifetime of the film samples. The lifetime of HDPE was found to decrease with the increase in the concentration of CoSt, thereby revealing its pro-oxidative ability. Minimum lifetime was noted for the HDPE/PLLA (80/20) sample blended with CoSt, which increased slightly in the presence of MA-g-PE. Studies indicated that the thermal degradation behavior and lifetime of the investigated film samples depends not only on the fractions of their constituents but also on the heating rates and calculation technique.


2020 ◽  
Vol 15 (1) ◽  
pp. 253-263
Author(s):  
Sharmeela Matali ◽  
Norazah Abd Rahman ◽  
Siti Shawalliah Idris ◽  
Nurhafizah Yaacob

Torrefaction is a thermal conversion method extensively used for improving the properties of biomass. Usually this process is conducted within a temperature range of 200-300 °C under an inert atmosphere with residence time up to 60 minutes. This work aimed to study the kinetic of thermal degradation of oil palm frond pellet (OPFP) as solid biofuel for bioenergy production. The kinetics of OPFP during torrefaction was studied using frequently used iso-conversional model fitting (Coats-Redfern (CR)) and integral model-free (Kissinger-Akahira-Sunose (KAS)) methods in order to provide effective apparent activation energy as a function of conversion. The thermal degradation experiments were conducted at four heating rates of 5, 10, 15, and 20 °C/min in a thermogravimetric analyzer (TGA) under non-oxidative atmosphere. The results revealed that thermal decomposition kinetics of OPFP during torrefaction is significantly influenced by the severity of torrefaction temperature. Via Coats-Redfern method, torrefaction degradation reaction mechanism follows that of reaction order with n = 1. The activation energy values were 239.03 kJ/mol and 109.28 kJ/mol based on KAS and CR models, respectively. Copyright © 2020 BCREC Group. All rights reserved 


2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6553
Author(s):  
Emmanuel Galiwango ◽  
Ali H. Al-Marzuoqi ◽  
Abbas A. Khaleel ◽  
Mahdi M. Abu-Omar

Using the thermalgravimetric technique, we investigated the non-isothermal combustion kinetics of abundant and low-cost date palm wastes (leaflet, rachis, fibers, and their composite) as potential biomass energy sources. The kinetic and thermodynamic parameters were determined by Flynn–Wall–Ozawa (FWO), Kissinger–Akahila–Sunose (KAS), and Starink methods. Thermogravimetric analysis results showed a major peak for the degradation of volatiles between 127–138 °C with average percentage mass loss of 68.04 ± 1.5, 65.57 ± 0.6, 62.97 ± 5.5, and 59.26 ± 3.2, for rachis, composite, leaflet, and fibers, respectively. The FWO model showed the lowest activation energy, Eα, of 157 ± 25.6, 158 ± 25.7, 164 ± 40.1, and 169 ± 51.8 kJ mol−1 for the composite, rachis, leaflet, and fibers, respectively. The positive enthalpy values confirmed an endothermic pyrolysis reaction. For all models, a minimal difference of 4.40, 5.57, 6.55, and 7.51 kJ mol−1 between activation energy and enthalpy for rachis, fibers, composite, and leaflet ensued, respectively. The KAS model was best suited to describe chemical equilibrium with average ΔG values of 90.3 ± 28.8, 99.3 ± 34.9, 178.9 ± 27.3, and 186.5 ± 38.2 kJ mol−1 for rachis, fibers, composite, and leaflet, respectively. The reaction mechanism by the Malek and Popescu methods was ((g(α)=[−ln(1−α)]14) across the conversion range of 0.1–0.9 for all heating rates. The high energy content and volatile matter combined with low energy barriers make date palm waste a potential candidate in a biorefinery.


2020 ◽  
Vol 842 ◽  
pp. 98-104
Author(s):  
Jia Li ◽  
Hui Wang ◽  
Zhong Han Li ◽  
Ting Ting Zhao ◽  
Tian Tian Wang ◽  
...  

Thermal degradation of the composite constituted by high density polyethylene (HDPE) and microencapsulated red phosphorus (MRP) were studied using thermogravimetric (TG) data obtained at different heating rates. The kinetic models and parameters of the thermal degradation of MRP/HDPE composite were evaluated by FWO, KAS and IKP method. It indicates that the activation energy E of 4 % MRP/HDPE composite is higher than HDPE for three methods. MRP could improve the thermal stability and slow down the thermal degradation of HDPE. With adding MRP, the degradation mechanism of HDPE is changed and the degradation rate decreases.


2012 ◽  
Vol 486 ◽  
pp. 27-33 ◽  
Author(s):  
Jae Young Lee ◽  
Sung Wan Hong ◽  
Kyeong Sik Han ◽  
Taeck Hong Lee ◽  
Hong Ki Lee

Palladium (Pd) nanoparticles were incorporated into a nylon 6 film via a dry process which consisted of simultaneous vaporization, penetration and reduction processes of palladium (II) bis (acetylacetonate, Pd (acac)2) at 180°C for various exposure time. The even dispersion of the generated Pd nanoparticles were observed by transmission electron microscope (TEM) and the Pd loading weight of about 15~43 wt% was measured by thermogravimetric analysis (TGA). In order to study the catalytic effect of Pd nanoparticles on the thermal degradation kinetics of nylon 6, TGA data at various heating rates were introduced to Flynn & Wall equation. The thermal degradation activation energy for neat nylon 6 was ca. 162~178 kJ/mol over the thermal degradation fraction of 0.05~0.40 while that of the nylon 6/Pd (26.5 wt%) nanocomposite was ca. 110~169 kJ/mol over the same fraction range. It meant the Pd nanoparticles were acted as a catalyst on the depolymerization of amide group in nylon 6. It was also found that the activation energy decreased slightly with the increasing Pd loading weight.


2018 ◽  
Vol 39 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Dev K. Mandal ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai

AbstractIn this article, the influence of polylactide and pro-oxidant on the thermal stability, degradation kinetics, and lifetime of polypropylene has been investigated using thermogravimetric analysis under nitrogen atmosphere at four different heating rates (i.e. 5, 10, 15, and 20°C/min). The kinetic parameters of degradation were studied over a temperature range of 30–550°C. The derivative thermogravimetric curves have indicated single stage and two stage degradation processes. The activation energy was evaluated by using the Kissinger, Kim-Park, and Flynn-Wall methods under the nitrogen atmosphere. The activation energy value of polypropylene was much higher than that of polylactide. Addition of polylactide and pro-oxidant in polypropylene decreased the activation energy. The lifetime of polypropylene has also decreased with the addition of polylactide and pro-oxidant.


2018 ◽  
Vol 28 ◽  
pp. 75-89
Author(s):  
Hamid Reza Javadinejad ◽  
Sayed Ahmad Hosseini ◽  
Mohsen Saboktakin Rizi ◽  
Eiman Aghababaei ◽  
Hossein Naseri

The kinetic study for the synthesis of Fluorapatite has been done using the thermogravimetric technique under non-isothermal conditions and at four heating rates of 5, 10, 15 and 20 °C. Both model free and model-fitting methods were used to investigate kinetic parameters. Calcium oxide, phosphorus pentoxide and calcium fluoride were used as the precursor materials. The activation energy values were calculated through model-fitting and isoconversional methods and were used to predict the reaction model and pre-exponential factor. In this case several techniques were considered such as master plots and compensation effects. The results indicated that the reaction mechanism was chemically controlled with second and third order reaction models in the whole range of conversion which the activation energy varied from 25 to 43 kJ/mol.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7564
Author(s):  
Haibo Wan ◽  
Zhen Huang

Thermal degradation of nylon-6 tennis string nylon wastes in inert nitrogen and air atmospheres was investigated by means of multiple heating-rate thermogravimetric analyses. The results obtained under the heating rates of 5–20 K/min are compared in terms of degradation feature and specific temperature for two atmospheres. Using nonisothermal data, kinetic analysis was thoroughly conducted using various isoconversional model-free methods, including Starink, Madhusudanan–Krishnan–Ninan, Tang, Coats–Redfern, and Flynn–Wall–Ozawa methods. With these kinetic analysis methods, the activation energy over the entire degradation process was successfully calculated. By means of the model-fitting master-plots method, the first-order chemical reaction model was determined to be the most appropriate mechanism function for describing pyrolysis and oxidative thermal degradation of nylon-6 waste. Using kinetic parameters, satisfactory matching against experimental data resulted using the Coats–Redfern method for both cases. Furthermore, thermodynamic parameters such as changes in entropy, enthalpy, and Gibbs free energy during thermal degradation processes were evaluated.


Sign in / Sign up

Export Citation Format

Share Document