scholarly journals Chironomus riparius Proteome Responses to Spinosad Exposure

Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 117
Author(s):  
Hugo R. Monteiro ◽  
João L. T. Pestana ◽  
Amadeu M. V. M. Soares ◽  
Bart Devreese ◽  
Marco F. L. Lemos

The potential of proteome responses as early-warning indicators of insecticide exposure was evaluated using the non-biting midge Chironomus riparius (Meigen) as the model organism. Chironomus riparius larvae were exposed to environmentally relevant concentrations of the neurotoxic pesticide spinosad to uncover molecular events that may provide insights on the long-term individual and population level consequences. The iTRAQ labeling method was performed to quantify protein abundance changes between exposed and non-exposed organisms. Data analysis revealed a general dose-dependent decrease in the abundance of globin proteins as a result of spinosad exposure. Additionally, the downregulation of actin and a larval cuticle protein was also observed after spinosad exposure, which may be related to previously determined C. riparius life-history traits impairment and biochemical responses. Present results suggest that protein profile changes can be used as early warning biomarkers of pesticide exposure and may provide a better mechanistic interpretation of the toxic response of organisms, aiding in the assessment of the ecological effects of environmental contamination. This work also contributes to the understanding of the sublethal effects of insecticides in invertebrates and their molecular targets.

2007 ◽  
Vol 26 (2) ◽  
pp. 120-137
Author(s):  
A. J. Reinecke ◽  
S. A. Reinecke ◽  
M. S. Maboeta ◽  
J. P. Odendaal ◽  
R. Snyman

Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications). Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in spite of the fact that direct mechanistic links are still not clarified, biomarkers may have the potential to provide early indications of forthcoming changes at higher organisational levels. Ways are proposed in which biomarkers could be used in the future in risk assessment schemes of soils and future research directions are suggested. 


2017 ◽  
Vol 284 (1858) ◽  
pp. 20170493 ◽  
Author(s):  
Veronika Bókony ◽  
Zsanett Mikó ◽  
Ágnes M. Móricz ◽  
Dániel Krüzselyi ◽  
Attila Hettyey

Chemical pollutants can exert various sublethal effects on wildlife, leading to complex fitness consequences. Many animals use defensive chemicals as protection from predators and diseases, yet the effects of chemical contaminants on this important fitness component are poorly known. Understanding such effects is especially relevant for amphibians, the globally most threatened group of vertebrates, because they are particularly vulnerable to chemical pollution. We conducted two experiments to investigate how exposure to glyphosate-based herbicides, the most widespread agrochemicals worldwide, affects the production of bufadienolides, the main compounds of chemical defence in common toads ( Bufo bufo ). In both experiments, herbicide exposure increased the amount of bufadienolides in toad tadpoles. In the laboratory, individuals exposed to 4 mg a.e./L glyphosate throughout their larval development had higher bufadienolide content at metamorphosis than non-exposed tadpoles, whereas exposure for 9 days to the same concentration or to 2 mg a.e./L throughout larval development or for 9 days had no detectable effect. In outdoor mesocosms, tadpoles from 16 populations exhibited elevated bufadienolide content after three-weeks exposure to both concentrations of the herbicide. These results show that pesticide exposure can have unexpected effects on non-target organisms, with potential consequences for the conservation management of toxin-producing species and their predators.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25516 ◽  
Author(s):  
Barron L. Lincoln ◽  
Sahar H. Alabsi ◽  
Nicholas Frendo ◽  
Robert Freund ◽  
Lani C. Keller

Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48096 ◽  
Author(s):  
Marino Marinković ◽  
Wim C. de Leeuw ◽  
Mark de Jong ◽  
Michiel H. S. Kraak ◽  
Wim Admiraal ◽  
...  

2009 ◽  
Vol 40 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Paul M. Craig ◽  
Christer Hogstrand ◽  
Chris M. Wood ◽  
Grant B. McClelland

Although copper (Cu) is an essential micronutrient for all organisms, in excess, waterborne Cu poses a significant threat to fish from the cellular to population level. We examined the physiological and gene expression endpoints that chronic waterborne Cu exposure (21 d) imposes on soft-water acclimated zebrafish at two environmentally relevant concentrations: 8 μg/l (moderate) and 15 μg/l (high). Using a 16,730 65-mer oligonucleotide customized zebrafish microarray chip related to metal metabolism and toxicity to assess the transcriptomic response, we found that 573 genes in the liver responded significantly to Cu exposure. These clustered into three distinct patterns of expression. There was distinct upregulation of a majority of these genes under moderate Cu exposure and a significant downregulation under high Cu exposure. Microarray results were validated by qPCR of eight genes; two genes, metallothionein 2 (mt2) and Na+-K+-ATPase 1a1 (atp1a1), displayed increased expression under both Cu exposures, indicative of potential genetic endpoints of Cu toxicity, whereas the remaining six genes demonstrated opposing effects at each Cu exposure. Na+-K+-ATPase enzyme activity decreased during Cu exposure, which may be linked to Cu's competitive effects with Na+. Whole body cortisol levels were significantly increased in Cu-exposed fish, which prompted an analysis of the promoter region of all significantly regulated genes for glucocorticoid (GRE) and metal (MRE) response elements to dissociate metal- and stress-specific gene responses. Of the genes significantly regulated, 30% contained only a GRE sequence, whereas 2.5% contained only a consensus MRE. We conclude that the indirect effects of Cu exposure regulate gene expression to a much greater degree than the direct effects.


2012 ◽  
Vol 33 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Barbara Wojtasik ◽  
Dorota Kuczyńska-Wiśnik

Temperature shock tolerance and heat shock proteins in Arctic freshwater ostracod Candona rectangulata - preliminary results Candona rectangulata is an ostracod species common in cold (<15°C) shallow freshwater Arctic water bodies. This species is useful in palaeolimnological studies because only few known autecological data can be applied in reconstructions of palaeoclimate. Particular attention was paid to the temperature, which is the basic factor determining the geographic range of a species. In this study a wide tolerance of C. rectangulata to the temperature was demonstrated for the first time. Its high tolerance to the temperature changes seems to be based on induction of set of proteins belonging to the family of heat shock proteins. Using PAGE-SDS electrophoresis variation in the protein profile of non-model organism undergoing stress in the field (South Spitsbergen, near Stanisław Siedlecki Polish Polar Station) and in laboratory cultures was presented. These results could explain the eurythermic range of C. rectangulata and its good adaptation to the environmental conditions which normally do not exist in Arctic freshwater ponds.


Author(s):  
David Tarazona ◽  
Guillermo Tarazona ◽  
Jose V. Tarazona

Environmental risk assessment is a key process for the authorization of pesticides, and is subjected to continuous challenges and updates. Current approaches are based on standard scenarios and independent substance-crop assessments. This arrangement does not address the complexity of agricultural ecosystems with mammals feeding on different crops. This work presents a simplified model for regulatory use addressing landscape variability, co-exposure to several pesticides, and predicting the effect on population abundance. The focus is on terrestrial vertebrates and the aim is the identification of the key risk drivers impacting on mid-term population dynamics. The model is parameterized for EU assessments according to the European Food Safety Authority (EFSA) Guidance Document, but can be adapted to other regulatory schemes. The conceptual approach includes two modules: (a) the species population dynamics, and (b) the population impact of pesticide exposure. Population dynamics is modelled through daily survival and seasonal reproductions rates; which are modified in case of pesticide exposure. All variables, parameters, and functions can be modified. The model has been calibrated with ecological data for wild rabbits and brown hares and tested for two herbicides, glyphosate and bromoxynil, using validated toxicity data extracted from EFSA assessments. Results demonstrate that the information available for a regulatory assessment, according to current EU information requirements, is sufficient for predicting the impact and possible consequences at population dynamic levels. The model confirms that agroecological parameters play a key role when assessing the effect of pesticide exposure on population abundance. The integration of laboratory toxicity studies with this simplified landscape model allows for the identification of conditions leading to population vulnerability or resilience. An Annex includes a detailed assessment of the model characteristics according to the EFSA scheme on Good Modelling Practice.


2018 ◽  
Author(s):  
Thomas C. T. Michaels ◽  
Christoph A. Weber ◽  
L. Mahadevan

AbstractProtein aggregation has been implicated in many diseases.1-7 Therapeutic strategies for these diseases propose the use of drugs to inhibit specific molecular events during the aggregation process.8-11 However, viable treatment protocols require balancing the efficacy of the drug with its toxicity while accounting for the underlying events of aggregation and inhibition at the molecular level. Here, we combine aggregation kinetics and control theory to determine optimal protocols which prevent protein aggregation via specific reaction pathways. We find that the optimal inhibition of primary and fibril-dependent secondary nucleation require fundamentally different drug administration protocols. We test the efficacy of our approach on experimental data for Amyloid-β aggregation of Alzheimer’s disease in the model organism C. elegans. Our results pose and answer the question of the link between the molecular basis of protein aggregation and optimal strategies for inhibiting it, opening up new avenues for the design of rational therapies to control pathological protein aggregation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3266 ◽  
Author(s):  
Emma C. Wallace ◽  
Lina M. Quesada-Ocampo

Downy mildew pathogens affect several economically important crops worldwide but, due to their obligate nature, few genetic resources are available for genomic and population analyses. Draft genomes for emergent downy mildew pathogens such as the oomycete Pseudoperonospora cubensis, causal agent of cucurbit downy mildew, have been published and can be used to perform comparative genomic analysis and develop tools such as microsatellites to characterize pathogen population structure. We used bioinformatics to identify 2,738 microsatellites in the P. cubensis predicted transcriptome and evaluate them for transferability to the hop downy mildew pathogen, Pseudoperonospora humuli, since no draft genome is available for this species. We also compared the microsatellite repertoire of P. cubensis to that of the model organism Hyaloperonospora arabidopsidis, which causes downy mildew in Arabidopsis. Although trends in frequency of motif-type were similar, the percentage of SSRs identified from P. cubensis transcripts differed significantly from H. arabidopsidis. The majority of a subset of microsatellites selected for laboratory validation (92%) produced a product in P. cubensis isolates, and 83 microsatellites demonstrated transferability to P. humuli. Eleven microsatellites were found to be polymorphic and consistently amplified in P. cubensis isolates. Analysis of Pseudoperonospora isolates from diverse hosts and locations revealed higher diversity in P. cubensis compared to P. humuli isolates. These microsatellites will be useful in efforts to better understand relationships within Pseudoperonospora species and P. cubensis on a population level.


Sign in / Sign up

Export Citation Format

Share Document