scholarly journals Host–Pathogen Responses to Pandemic Influenza H1N1pdm09 in a Human Respiratory Airway Model

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 679
Author(s):  
Elizabeth A. Pharo ◽  
Sinéad M. Williams ◽  
Victoria Boyd ◽  
Vinod Sundaramoorthy ◽  
Peter A. Durr ◽  
...  

The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host–pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1139
Author(s):  
Liva Checkmahomed ◽  
Blandine Padey ◽  
Andrés Pizzorno ◽  
Olivier Terrier ◽  
Manuel Rosa-Calatrava ◽  
...  

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


2017 ◽  
Vol 49 (3) ◽  
pp. 1601710 ◽  
Author(s):  
Kenrie P. Y. Hui ◽  
Louisa L. Y. Chan ◽  
Denise I. T. Kuok ◽  
Chris K. P. Mok ◽  
Zi-feng Yang ◽  
...  

Since their first isolation in 2013, influenza A/H5N6 viruses have spread amongst poultry across multiple provinces in China and to Laos, Vietnam and Myanmar. So far, there have been 14 human H5N6 infections with 10 fatalities.We investigated the tropism, replication competence and cytokine induction of one human and two avian H5N6 isolates inex vivoandin vitrocultures derived from the human respiratory tract. Virus tropism and replication were studied inex vivocultures of human nasopharynx, bronchus and lung. Induction of cytokines and chemokines was measuredin vitroin virus-infected primary human alveolar epithelial cells.Human H5N6 virus replicated more efficiently than highly pathogenic avian influenza (HPAI) H5N1 virus and as efficiently as H1N1pdm inex vivohuman bronchus and lung and was also able to replicate inex vivocultures of human nasopharynx. Avian H5N6 viruses replicated less efficiently than H1N1pdm in human bronchial tissues and to similar titres as HPAI H5N1 in the lung. While the human H5N6 virus had affinity for avian-like receptors, the two avian isolates had binding affinity for both avian- and human-like receptors. All three H5N6 viruses were less potent inducers of pro-inflammatory cytokines compared with H5N1 virus.Human H5N6 virus appears better adapted to infect the human airways than H5N1 virus and may pose a significant public health threat.


1995 ◽  
Vol 73 (02) ◽  
pp. 219-222 ◽  
Author(s):  
Manuel Monreal ◽  
Luis Monreal ◽  
Rafael Ruiz de Gopegui ◽  
Yvonne Espada ◽  
Ana Maria Angles ◽  
...  

SummaryThe APTT has been considered the most suitable candidate to monitor the anticoagulant activity of hirudin. However, its use is hampered by problems of standardization, which make the results heavily dependent on the responsiveness of the reagent used. Our aim was to investigate if this different responsiveness of different reagents when added in vitro is to be confirmed in an ex vivo study.Two different doses of r-hirudin (CGP 39393), 0.3 mg/kg and 1 mg/kg, were administered subcutaneously to 20 New Zealand male rabbits, and the differences in prolongation of APTT 2 and 12 h later were compared, using 8 widely used commercial reagents. All groups exhibited a significant prolongation of APTT 2 h after sc administration of hirudin, both at low and high doses. But this prolongation persisted 12 h later only when the PTTa reagent (Boehringer Mannheim) was used. In general, hirudin prolonged the APTT most with the silica- based reagents.In a further study, we compared the same APTT reagents in an in vitro study in which normal pooled plasma was mixed with increasing amount of hirudin. We failed to confirm a higher sensitivity for silica- containing reagents. Thus, we conclude that subcutaneous administration of hirudin prolongs the APTT most with the silica-based reagents, but this effect is exclusive for the ex vivo model.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


2014 ◽  
Vol 56 (3) ◽  
pp. 191-195
Author(s):  
Dalva Assunção Portari Mancini ◽  
Aparecida Santo Pietro Pereira ◽  
Rita Maria Zucatelli Mendonça ◽  
Adelia Hiroko Nagamori Kawamoto ◽  
Rosely Cabette Barbosa Alves ◽  
...  

Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71) and 97.2% (70) of the equines responded with antibody protective titers (≥ 80 HIU/25µL) H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72) also responded with protective titers (≥ 80) HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05). The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001). These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male) or the age (≤ 2 to 20 years-old) groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8) viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 899
Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


2020 ◽  
Author(s):  
Kévin Brunet ◽  
François Arrivé ◽  
Jean-Philippe Martellosio ◽  
Isabelle Lamarche ◽  
Sandrine Marchand ◽  
...  

Abstract Alveolar macrophages (AM) are the first-line lung defense against Mucorales in pulmonary mucormycosis. Since corticosteroid use is a known risk factor for mucormycosis, the aim of this study was to describe the role of corticosteroids on AM capacities to control Lichtheimia corymbifera spore growth using a new ex vivo model. An in vivo mouse model was developed to determine the acetate cortisone dose able to trigger pulmonary invasive infection. Then, in the ex vivo model, male BALB/c mice were pretreated with the corticosteroid regimen triggering invasive infection, before AM collection through bronchoalveolar lavage. AMs from corticosteroid-treated mice and untreated control AMs were then exposed to L. corymbifera spores in vitro (ratio 1:5). AM control of fungal growth, adherence/phagocytosis, and oxidative burst were assessed using optical densities by spectrophotometer, flow cytometry, and 2', 7'-dichlorofluoresceine diacetate fluorescence, respectively. Cortisone acetate at 500 mg/kg, at D-3 and at D0, led to pulmonary invasive infection at D3. Co-incubated spores and AMs from corticosteroid-treated mice had significantly higher absorbance (fungal growth) than co-incubated spores and control AMs, at 24 h (P = .025), 36 h (P = .004), and 48 h (P = .001). Colocalization of spores with AMs from corticosteroid-treated mice was significantly lower than for control AMs (7.6 ± 1.9% vs 22.3 ± 5.8%; P = .003), reflecting spore adherence and phagocytosis inhibition. Finally, oxidative burst was significantly increased when control AMs were incubated with spores (P = 0.029), while corticosteroids hampered oxidative burst from treated AMs (P = 0.321). Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease in our ex vivo model. Lay Summary The aim of this study was to describe the impact of corticosteroids on alveolar macrophage (AM) capacities to control Mucorales growth in a new murine ex vivo model. Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Colin A Russell ◽  
Peter M Kasson ◽  
Ruben O Donis ◽  
Steven Riley ◽  
John Dunbar ◽  
...  

Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response.


2017 ◽  
Vol 22 (1) ◽  
pp. 31 ◽  
Author(s):  
Hugo Díez Ortega ◽  
Francisco Correa Toral ◽  
Leylin Delgado Hernández ◽  
Carolina Echavarría González ◽  
Fátima Serna Varona ◽  
...  

Endodontic disease has mainly a microbial origin. It is caused by biofilms capable of attaching and surviving in the root canal. Therefore, it is important to study the conditions in which those biofilms grow, develop and colonize the root canal system. However, few studies have used natural teeth as models, which would take into account the root canal anatomical complexity and simulate the clinical reality. In this study, we used human premolar root canals to standardize <em>in vitro</em> biofilm optimal formation conditions for microorganisms such as <em>Enterococcus faecalis</em>, <em>Staphylococcus aureus</em> and <em>Candida albicans</em>. 128 lower premolars underwent canal preparation using K-type files, and were treated with 5.25% sodium hypochlorite and EDTA. Samples were inoculated with microorganisms and incubated for 15, 30, 45, and 60 days under anaerobiosis (CO2 atmosphere) and aerobiosis. Microorganism presence was confirmed by Gram staining, cell culture, and electron microscopy. Exopolysaccharide matrix and microorganism aggregation were observed following 15 days of incubation. Bacterial growth towards the apical third of the root canal and biofilm maturation was detected after 30 days. CO2 atmosphere favored microbial growth the most. <em>In vitro</em> biofilm maturation was confirmed after 30 days of incubation under a CO2 atmosphere for both bacteria and yeast.


Author(s):  
Clara Liu Chung Ming ◽  
Kimberly Sesperez ◽  
Eitan Ben-Sefer ◽  
David Arpon ◽  
Kristine McGrath ◽  
...  

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation that is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD) including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion, however, that therapeutic approach leads to ischemic/reperfusion injury (IRI) often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


Sign in / Sign up

Export Citation Format

Share Document