scholarly journals Evaluation of the Expression of CCR5 and CX3CR1 Receptors and Correlation with the Functionality of T Cells in Women infected with ZIKV during Pregnancy

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Débora Familiar-Macedo ◽  
Iury Amancio Paiva ◽  
Jessica Badolato-Corrêa da Silva ◽  
Fabiana Rabe de Carvalho ◽  
Helver Gonçalves Dias ◽  
...  

There have been reports of neurological abnormalities associated with the Zika virus (ZIKV), such as congenital Zika syndrome (CZS) in children born to mothers infected during pregnancy. We investigated how the immune response to ZIKV during pregnancy is primed and conduct a thorough evaluation of the inflammatory and cytotoxic profiles as well as the expression of CCR5 and CX3CR1. We compared the reactivity of T cells to ZIKV peptides in convalescent mothers infected during pregnancy. The child’s clinical outcome (i.e., born with or without CZS) was taken to be the variable. The cells were stimulated in vitro with ZIKV peptides and evaluated using the ELISPOT and flow cytometry assays. After in vitro stimulation with ZIKV peptides, we observed a tendency toward a higher Interferon gamma (IFN-γ)-producing T cell responses in mothers who had asymptomatic children and a higher CD107a expression in T cells in mothers who had children with CZS. We found a higher frequency of T cells expressing CD107a+ and co-expressing CX3CR1+CCR5+, which is much clearer in the T cells of mothers who had CZS children. We suggest that this differential profile influenced the clinical outcome of babies. These data need to be further investigated, including the evaluation of other ZIKV peptides and markers and functional assays.

2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


2004 ◽  
Vol 72 (12) ◽  
pp. 7240-7246 ◽  
Author(s):  
Marion Pepper ◽  
Florence Dzierszinski ◽  
Amy Crawford ◽  
Christopher A. Hunter ◽  
David Roos

ABSTRACT The study of the immune response to Toxoplasma gondii has provided numerous insights into the role of T cells in resistance to intracellular infections. However, the complexity of this eukaryote pathogen has made it difficult to characterize immunodominant epitopes that would allow the identification of T cells with a known specificity for parasite antigens. As a consequence, analysis of T-cell responses to T. gondii has been based on characterization of the percentage of T cells that express an activated phenotype during infection and on the ability of these cells to produce cytokines in response to complex mixtures of parasite antigens. In order to study specific CD4+ T cells responses to T. gondii, recombinant parasites that express a truncated ovalbumin (OVA) protein, in either a cytosolic or a secreted form, were engineered. In vitro and in vivo studies reveal that transgenic parasites expressing secreted OVA are able to stimulate T-cell receptor-transgenic OVA-specific CD4+ T cells to proliferate, express an activated phenotype, and produce gamma interferon (IFN-γ). Furthermore, the adoptive transfer of OVA-specific T cells into IFN-γ−/− mice provided enhanced protection against infection with the OVA-transgenic (but not parental) parasites. Together, these studies establish the utility of this transgenic system to study CD4+-T-cell responses during toxoplasmosis.


2020 ◽  
Author(s):  
Ben-Shun Hu ◽  
Tian Tang ◽  
Tie-Long Wu ◽  
Ying-Yue Sheng ◽  
Yu-Zheng Xue

Abstract Background: CD137 is identified as a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis has not been studied yet. Methods: Foxp3+ and CD8+ T cells in GCs were investigated by immunohistochemistry (IHC). CD137 expression in GCs was detected by flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cells proliferation and p65 expression were explored by flow cytometry. p65 nuclear translocation was analyzed by IF. IL-10, TGF-β, IFN-γ, Perforin and Granzyme B were detected by real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with the CD137 agonist in vitro. Apoptosis of the primary GC cells was detected by flow cytometry. Results: Our data demonstrated that GC tumors show characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. CD137 agonist promoted CD8+ T cells proliferation and increased the secretion of IFN-γ, Perforin and Granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that CD137 agonist could induce NF-κB nuclear translocation in CD8+ T cells. Conclusion: Our results demonstrate that CD137 agonist can induce primary GC cell apoptosis by enhancing CD8+ T cells via activating NF-κB signaling.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ben-Shun Hu ◽  
Tian Tang ◽  
Jun-Li Jia ◽  
Bi-Chen Xie ◽  
Tie-Long Wu ◽  
...  

Abstract Background CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 764-764 ◽  
Author(s):  
Felix S. Lichtenegger ◽  
Katrin Deiser ◽  
Maurine Rothe ◽  
Frauke M. Schnorfeil ◽  
Christina Krupka ◽  
...  

Abstract Postremission therapy is critical for successful elimination of minimal residual disease (MRD) in acute myeloid leukemia (AML). Innovative treatment options are needed for patients that are not eligible for allogeneic stem cell transplantation. As the intrinsic immune response against leukemia-associated antigens (LAAs) is generally low, the clinical application of checkpoint inhibitors as monotherapy is less promising in AML compared to other hemato-oncological diseases. Therapeutic vaccination with autologous dendritic cells (DCs) loaded with LAAs is a promising treatment strategy to induce anti-leukemic immune responses. We have conducted a phase I/II proof-of-concept study using monocyte-derived next-generation DCs as postremission therapy of AML patients with a non-favorable risk profile in CR/CRi after intensive induction therapy (NCT01734304). These DCs are generated using a GMP-compliant 3-day protocol including a TLR7/8 agonist, loaded with RNA encoding the LAAs WT1 and PRAME as well as CMVpp65 as adjuvant/surrogate antigen, and are applied intradermally up to 10 times within 26 weeks. The primary endpoint of the trial is feasibility and safety of the vaccination. Secondary endpoints are immunological responses and disease control. After the safety and toxicity profile was evaluated within phase I (n=6), the patient cohort was expanded to a total of 13 patients. DCs of sufficient number and quality could be generated from leukapheresis in 11/12 cases. DCs exhibited an immune-stimulatory profile based on high costimulatory molecule expression, IL-12p70 secretion, migration towards a chemokine gradient and processing and presentation of antigen. In 9/9 patients that are currently evaluable, we observed delayed-type hypersensitivity (DTH) responses at the vaccination site, but no grade III/IV toxicities. TCR repertoire analysis by next-generation sequencing revealed an enrichment of particular clonotypes at DTH sites. In the peripheral blood, we detected vaccination-specific T cell responses by multimer staining and by ELISPOT analysis: 7/7 patients showed responses to CMVpp65, including both boosting of pre-existing T cells in CMV+ patients and induction of a primary T cell response in CMV- patients. 2/7 patients exhibited responses to PRAME and WT each. 7/10 vaccinated patients are still alive, and 5/10 are in CR, with an observation period of up to 840 days. In vitro, DC-activated T cells showed an upregulation of PD-1 and LAG-3, while the DCs expressed the respective ligands PD-L1 and HLA-DR. Therefore, we studied the capacity of checkpoint blocking antibodies to further enhance T-cell activation by DCs. We found that blockade of PD-1 and particularly of LAG-3 was highly effective in enhancing both IFN-γ secretion and proliferation of T cells. Both pathways seem to target different T-cell subsets, as PD-1 blockade resulted in increased IFN-γ secretion by TN- and TEM-subsets, while blockade of LAG-3 significantly affected TN- and TCM-subsets. We conclude that vaccination with next-generation LAA-expressing DCs in AML is feasible, safe, and induces anti-leukemic immune responses in vivo. Our in vitro data supports the hypothesis that T-cell activation by means of the vaccine could be further enhanced by blocking PD-1 and/or LAG-3. Disclosures Subklewe: AMGEN Research Munich: Research Funding.


2020 ◽  
Author(s):  
Ben-Shun Hu ◽  
Tian Tang ◽  
Tie-Long Wu ◽  
Ying-Yue Sheng ◽  
xue yuzheng

Abstract Background: CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods: Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results: Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion: Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5428-5428 ◽  
Author(s):  
Sarah Matko ◽  
Marcus Odendahl ◽  
Martin Bornhaeuser ◽  
Torsten Tonn

Abstract While adoptive transfer of virus antigen specific T cells has shown to be effective in therapy of resistant recurrent viremia which is frequently associated with the lack of protective immunity following hematopoietic stem cell transplantation, the transfer of leukemia associated antigen specific (LAA) T cells is less implemented and appears to depend on factors that hamper a successful translation into the clinic. Among them are low frequencies and low antigen affinity of LAA specific T cells which currently mandate laborious in vitro expansion protocols. Moreover, screening of healthy individuals with regard to the presence of LAA specific T cells revealed contradictory results. Since we failed to detect LAA specific T cells in healthy donors using single peptide specificities to known LAA epitopes coupled to MHC Streptamers, here we asked if the use of peptide mixes comprising 15mers overlapping by 11 amino acids and spanning the entire LAA protein could elicit in vitro T cell responses in healthy donors, otherwise undetectable by single peptide staining. A cohort of 48 HLA A*0201 healthy individuals was screened using intracellular cytokine staining (ICS) after stimulation with tumor specific peptide mixes representing well known LAAs (WT1, PRAME, NY-ESO, Survivin and p53). While distinct T-helper cell responses were not observed in either of the specimen tested, cytotoxic T lymphocytes could be elicited and measured after incubation with peptide mixes for 5 hours and subsequent CD8+ IFNγ+ staining in 12 out of 48 healthy subjects. Only one individual displayed specifies against multiple antigens (WT1:0,1%; PRAME:0,5%; NY-ESO:0,1%; p53:0.06%), while the remaining responses were directed to one single antigen per individual. Most prevalent and highest T cell frequencies were found against PRAME in 5 out of all screened subjects (mean 0.4±0.3%; max. 0.8%), followed by WT1 in 4 (mean 0.07±0.03%; max. 0.1%) and NY-ESO in 3 individuals (mean 0,07±0,04%; max. 0,1%); one showed CD8 T cells specific against Survivin (0,03%) and 2 individuals had CD8 frequencies specific against p53 (0,05±0,01; max. 0,06%), respectively. The calculated limit of detection (LOD) for the enumeration of LAA specific T cells was 0,02%. In contrary, testing LAA positive individuals with according MHC Streptamers presenting single peptides of previously described epitopes showed no frequencies exceeding LOD. Further analysis showed LAA specific CD8+ IFNγ+ T cells exhibit mainly a less differentiated phenotype (CD45RA+, CCR7+/-, TNFα+, IL-2+/-) and could be immune-magnetically isolated to purities of 94.5±0.7% using a PRAME-specific IFN-γ capture assay yielding 1*104 antigen specific T cells out of 4*107 PBMCs. Simultaneous enrichment of helper T cells to a purity of 73.0±7.6% proofed their existence, despite no CD4+ response could be detected via ICS in the first place. The cytotoxic potential of the cell product was confirmed in an Europium assay using T2 cells loaded with PRAME peptide mix. The specific lysis accounted to 19.3% at an E:T ratio of 1:1 after 90 minutes of co-incubation. In conclusion, using LAA specific peptide mixes in combination with ICS we were able to show a relatively high prevalence of LAA specific T cells, especially for PRAME, in healthy donors. These LAA specific T cells can be enriched without the need of in vitro expansion culturing ex vivo using the IFN-γ capture assay with regard to achieving a functional LAA specific T cell product for adoptive T cell transfer. Furthermore, a less differentiated phenotype exhibited by a large proportion of LAA specific T cells might contribute to their long term survival in a patient after transplantation. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ben-Shun Hu ◽  
Tian Tang ◽  
Jun-Li Jia ◽  
Bi-Chen Xie ◽  
Tie-Long Wu ◽  
...  

Abstract Background: CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods: Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results: Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion: Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-218403
Author(s):  
Jiayang Sun ◽  
Chen Zhan ◽  
Zheng Deng ◽  
Wei Luo ◽  
Qiaoli Chen ◽  
...  

Chronic refractory cough (CRC) is characterised by cough hypersensitivity. Interferon-γ (IFN-γ) has been reported to induce calcium influx, action potentials of vagal neurons in vitro and cough response in guinea pigs. While the effect of IFN-γ in CRC patients remains unknown. Here, via flow-cytometry and inhalation cough challenge, we found CRC patients had significantly increased levels of sputum IFN-γ+CD4+ T cells, IFN-γ+CD8+ T cells as well as supernatant of IFN-γ. The average number of coughs in CRC patients increased as the concentration of inhaled IFN-γ went up in IFN-γ cough challenge. Two or more coughs and five or more coughs elicited by inhaled IFN-γ in CRC patients occurred in 7 of 10 and 2 of 10, respectively. Preinhaled IFN-γ (100 µg/mL) increased the capsaicin cough sensitivity in CRC patients but not healthy volunteers. Targeting IFN-γ may be a potential effective anti-tussive strategy in CRC patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2306-2306
Author(s):  
Debra K. Czerwinski ◽  
Joshua D. Brody ◽  
Ronald Levy

Abstract As immunotherapies become increasingly important in the treatment of various cancers, monitoring the immune response to reflect the efficacy of the therapy also becomes increasingly important. Previously, tumor antigen-specific humoral responses in patients receiving vaccines for low-grade follicular lymphoma (FL) correlated with clinical outcomes, including tumor regression, molecular remission, progression free survival (PFS) and overall survival (OS). By contrast, T cell immune responses have been difficult to validate. T cell proliferation assays, mostly, measure CD4 T cell responses; whereas, CD8 T cells may be the important effectors generated by immunotherapies. However, assays designed to measure CD8 T cells, i.e. chromium release CTL assays, and IFN-γ ELISPOT and intracellular flow cytometry assays, are difficult to make reproducible. To address this issue, PBL were obtained from FL patients, cryopreserved, and thawed, then used to design a standardized method for detection of intracellular IFN-γ by flow cytometry. The combined stimulus of soluble anti-CD3 and anti-CD28 antibodies provides a robust stimulation, typically about 5% of normal PBL CD8+ T cells respond. By using a panel of irradiated B cell lymphoma cell lines as stimulators, we demonstrated that, on average, 1 – 2% of these T cells were capable of mounting a response in this assay. Surprisingly, CD8+ PBL T cells from several patients with FL were more responsive to combined anti-CD3 and anti-CD28 stimulation as well as to allo-stimulation, 15 – 22% and 2 – 6%, respectively. This response was accompanied by surface expression of CD107, a surrogate marker for CTL degranulation, in the same population of cells as demonstrated by multi-color flow cytometry. Both the IFN-γ and the CD107 responses were inhibited by an anti-class I antibody, W6/32, suggesting a class I restricted T cell receptor-mediated response. Furthermore, at later time points, these T cells also up-regulated CD137 on their surface. This activation molecule is upregulated on CD8 T cells in response to specific antigen recognition and provides an anti-apoptotic signal to the cells. In conclusion, immune competency of CD8 T cells isolated from FL patients can be assessed through allo-stimulation by a panel of B cell lymphoma cell lines. More importantly, correlation by flow cytometry of 3 independent indicators of response (IFN-γ, CD107 and CD137) within single populations of cells to both allo-stimulation and to the specific target, may lead to better understanding of the role of T cells in the immune response. Ultimately, these responses will need to be validated with patient outcomes in clinical trials of vaccines in lymphoma.


Sign in / Sign up

Export Citation Format

Share Document