scholarly journals Genome-wide identification of ZF-HD gene family in Triticum aestivum: Molecular evolution mechanism and function analysis

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256579
Author(s):  
Hongli Niu ◽  
Pengliang Xia ◽  
Yifeng Hu ◽  
Chuang Zhan ◽  
Yiting Li ◽  
...  

ZF-HD family genes play important roles in plant growth and development. Studies about the whole genome analysis of ZF-HD gene family have been reported in some plant species. In this study, the whole genome identification and expression profile of the ZF-HD gene family were analyzed for the first time in wheat. A total of 37 TaZF-HD genes were identified and divided into TaMIF and TaZHD subfamilies according to the conserved domain. The phylogeny tree of the TaZF-HD proteins was further divided into six groups based on the phylogenetic relationship. The 37 TaZF-HDs were distributed on 18 of 21 chromosomes, and almost all the genes had no introns. Gene duplication and Ka/Ks analysis showed that the gene family may have experienced powerful purification selection pressure during wheat evolution. The qRT-PCR analysis showed that TaZF-HD genes had significant expression patterns in different biotic stress and abiotic stress. Through subcellular localization experiments, we found that TaZHD6-3B was located in the nucleus, while TaMIF4-5D was located in the cell membrane and nucleus. Our research contributes to a comprehensive understanding of the TaZF-HD family, provides a new perspective for further research on the biological functions of TaZF-HD genes in wheat.

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 215 ◽  
Author(s):  
Qingnan Hao ◽  
Ling Zhang ◽  
Yanyan Yang ◽  
Zhihui Shan ◽  
Xin-an Zhou

WUSCHEL-related homeobox (WOX) is a family of transcription factors that are unique to plants and is characterized by the presence of a homeodomain. The WOX transcription factor plays an important role in regulating plant growth and development and the response to abiotic stress. Soybean is one of the most important oil crops worldwide. In this study, based on the available genome data of soybean, the WOX gene family was identified by bioinformatics analysis. The chromosome distribution, gene and protein structures, phylogenetic relationship and gene expression patterns of this family were comprehensively compared. The results showed that a total of 33 putative WOX genes in the soybean genome were found and then designated as GmWOX1- GmWOX33, which were distributed across 19 chromosomes except chromosome 16. Multiple sequence analysis of the GmWOX gene family revealed a highly conserved homeodomain. Phylogenetic tree analysis showed that 33 WOX genes could be divided into three major clades (modern/WUS, intermediate and ancient) in soybean. Of these 33 WOX genes, some showed differential expression patterns in the tested tissues (leaves, pods, unopen and open flowers, nodules, seed, roots, root hairs, stems, shoot apical meristems and shoot tips). In addition, the expression profile and qRT-PCR analysis showed that most of the GmWOX genes responded to different abiotic stress treatments (cold and drought). According to the expression pattern of GmWOX genes in the high regeneration capacity soybean material P3, overexpression of GmWOX18 was selected for function analysis. The overexpression of GmWOX18 increased the regeneration ability of clustered buds. The results will provide valuable information for further studies on the roles of WOX genes in regulating soybean growth, development and responses to abiotic stress, as well as a basis for the functional identification and analysis of WOX genes in soybean.


2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Abstract Background: Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber (Cucumis sativus L.). Results: In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK (CsLecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis.Conclusion: This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLKs might play in the life cycle of cucumber.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1032 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber (Cucumis sativus L.). In this study, 46 putative LecRLK genes were identified in the cucumber genome, including 23 G-type and 22 L-type, and one C-type LecRLK gene. They were unequally distributed on all seven chromosomes, with a clustering tendency. Most of the genes in the cucumber LecRLK (CsLecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormones and stress on these genes’ promoters. Transcriptome data demonstrated distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real-time PCR (qRT-PCR) analysis. This study provides a better understanding of the character and function of the LecRLK gene family in cucumber and opens up the possibility to exploring the roles that LecRLKs might play in the life cycle of cucumber.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 417
Author(s):  
Fulei Mo ◽  
Nian Zhang ◽  
Youwen Qiu ◽  
Lingjun Meng ◽  
Mozhen Cheng ◽  
...  

F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant’s response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes’ promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.


2022 ◽  
Vol 23 (1) ◽  
pp. 542
Author(s):  
Yan Zhang ◽  
Lanjie Zheng ◽  
Liu Yun ◽  
Li Ji ◽  
Guanhui Li ◽  
...  

Catalases (CATs) are present in almost all living organisms and play important roles in plant development and response to various stresses. However, there is relatively little information on CAT genes in wheat and related Triticeae species. A few studies on CAT family genes in wheat have been reported. In this study, ten CAT proteins (TaCATs) were identified in wheat and classified into three groups based on their phylogenetic features and sequence analysis. The analysis of the structure and motif composition of the TaCAT proteins suggested that a segmental duplication event occurred in the TaCAT gene family. Collinearity relationship analysis among different species showed that there were three orthologous CAT genes in rice and in maize. By analyzing the cis-elements in the promoter regions, we speculated that TaCAT genes expression might be regulated by light, oxygen deficit, methyl jasmonate and abscisic acid, and by transcription factors such as MYB. A Gene Ontology (GO)-based analysis showed that TaCAT proteins may be related to the response to various stresses, are cytoplasm localized, and may function as antioxidant enzymes. RT-qPCR and transcriptome data analyses exhibited distinct expression patterns of TaCAT genes in different tissues and in response to various treatments. In this study, a comprehensive analysis of wheat CAT genes was performed, enriching our knowledge of CAT genes and providing a foundation for further functional analyses of this gene family in wheat.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3962 ◽  
Author(s):  
Zhiru Xu ◽  
Liying Gao ◽  
Mengquan Tang ◽  
Chunpu Qu ◽  
Jiahuan Huang ◽  
...  

Copper plays key roles in plant physiological activities. To maintain copper cellular homeostasis, copper chaperones have important functions in binding and transporting copper to target proteins. Detailed characterization and function analysis of a copper chaperone, CCH, is presently limited to Arabidopsis. This study reports the identification of 21 genes encoding putative CCH proteins in Populus trichocarpa. Besides sharing the conserved metal-binding motif MXCXXC and forming a βαββαβ secondary structure at the N-terminal, all the PtCCHs possessed the plant-exclusive extended C-terminal. Based on their gene structure, conserved motifs, and phylogenetic analysis, the PtCCHs were divided into three subgroups. Our analysis indicated that whole-genome duplication and tandem duplication events likely contributed to expansion of the CCH gene family in Populus. Tissue-specific data from PlantGenIE revealed that PtCCH genes had broad expression patterns in different tissues. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that PnCCH genes of P. simonii × P. nigra also had different tissue-specific expression traits, as well as different inducible-expression patterns in response to copper stresses (excessive and deficiency). In summary, our study of CCH genes in the Populus genome provides a comprehensive analysis of this gene family, and lays an important foundation for further investigation of their roles in copper homeostasis of poplar.


2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Abstract Background Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber ( Cucumis sativus L.). Results In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK ( Cs ecRLK ) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis. Conclusion This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLK s might play in the life cycle of cucumber.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1017
Author(s):  
Hirohisa Mekata ◽  
Tomohiro Okagawa ◽  
Satoru Konnai ◽  
Takayuki Miyazawa

Bovine foamy virus (BFV) is a member of the foamy virus family in cattle. Information on the epidemiology, transmission routes, and whole-genome sequences of BFV is still limited. To understand the characteristics of BFV, this study included a molecular survey in Japan and the determination of the whole-genome sequences of 30 BFV isolates. A total of 30 (3.4%, 30/884) cattle were infected with BFV according to PCR analysis. Cattle less than 48 months old were scarcely infected with this virus, and older animals had a significantly higher rate of infection. To reveal the possibility of vertical transmission, we additionally surveyed 77 pairs of dams and 3-month-old calves in a farm already confirmed to have BFV. We confirmed that one of the calves born from a dam with BFV was infected. Phylogenetic analyses revealed that a novel genotype was spread in Japan. In conclusion, the prevalence of BFV in Japan is relatively low and three genotypes, including a novel genotype, are spread in Japan.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 194
Author(s):  
Peizhe Feng ◽  
Changxu Tian ◽  
Xinghua Lin ◽  
Dongneng Jiang ◽  
Hongjuan Shi ◽  
...  

Somatostatins (SSTs) are a family of proteins consisting of structurally diverse polypeptides that play important roles in the growth regulation in vertebrates. In the present study, four somatostatin genes (SST1, SST3, SST5, and SST6) were identified and characterized in the spotted scat (Scatophagus argus). The open reading frames (ORFs) of SST1, SST3, SST5, and SST6 cDNA consist of 372, 384, 321, and 333 bp, respectively, and encode proteins of 123, 127, 106, and 110 amino acids, respectively. Amino acid sequence alignments indicated that all SST genes contained conserved somatostatin signature motifs. Real-time PCR analysis showed that the SST genes were expressed in a tissue specific manner. When liver fragments were cultured in vitro with synthetic peptides (SST1, SST2, or SST6 at 1 μM or 10 μM) for 3 h or 6 h, the expression of insulin-like growth factor 1 and 2 (Igf-1 and Igf-2) in the liver decreased significantly. Treatment with SST5 had no significant effect on Igf-1 and Igf-2 gene expression. This study provides an enhanced understanding of the gene structure and expression patterns of the SST gene family in S. argus. Furthermore, this study provides a foundation for future exploration into the role of SST genes in growth and development.


Sign in / Sign up

Export Citation Format

Share Document