scholarly journals Intranasal Therapeutic Peptide Vaccine Promotes Efficient Induction and Trafficking of Cytotoxic T Cell Response for the Clearance of HPV Vaginal Tumors

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 259
Author(s):  
Gloria Sierra ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
Sita M. K. Nookala ◽  
Ananta V. Yanamandra ◽  
...  

Human papillomavirus (HPV)-induced cancers continue to affect millions of women around the world, and the five year survival rate under the current standard of care for these cancers is less than 60% in some demographics. Therefore there is still an unmet need to develop an effective therapy that can be easily administered to treat established HPV cervical cancer lesions. We sought to investigate the potential of an intranasal HPV peptide therapeutic vaccine incorporating the combination of α-Galactosylceramide (α-GalCer) and CpG-ODN adjuvants (TVAC) against established HPV genital tumors in a syngeneic C57BL/6J mouse model. We obtained evidence to show that TVAC, delivered by the mucosal intranasal route, induced high frequencies of antigen-specific CD8 T cells concurrent with significant reduction in the immunosuppressive regulatory T cells and myeloid derived suppressor cells in the tumor microenvironment (TME), correlating with sustained elimination of established HPV genital tumors in over 85% of mice. Inclusion of both the adjuvants in the vaccine was necessary for significant increase of antigen-specific CD8 T cells to the tumor and antitumor efficacy because vaccination incorporating either adjuvant alone was inefficient. These results strongly support the utility of the TVAC administered by needle-free intranasal route as a safe and effective strategy for the treatment of established genital HPV tumors.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Anupam Kumar ◽  
Katharine Chen ◽  
Claudia Petritsch ◽  
Theodore Nicolaides ◽  
Mariarita Santi-Vicini ◽  
...  

Abstract The determinants of the tumor-associated immune response in brain tumors are poorly understood. Using tumor samples from two molecularly distinct subtypes of lower grade glioma, MAPK-driven glioma with biallelic inactivation of CDKN2A (n=30) and IDH-mutant, 1p/19q-intact astrocytoma (n=29), we demonstrate qualitative and quantitative differences in the tumor-associated immune response and we investigate the molecular mechanisms involved. Histologically the MAPK-driven gliomas were comprised of pleomorphic xanthoastrocytoma (PXA) (n=11) and anaplastic PXA (n=19). Seven patients had paired samples from two sequential surgeries. Immune cell populations and their activity were determined by quantitative multiplex immunostaining and Digital Spatial Profiling and gene expression was analyzed by Nanostring. Functional studies were performed using established cell lines and two new patient-derived lines from MAPK-driven LGGs. MAPK-driven tumors exhibited an increased number of CD8+ T cells and tumor-associated microglial/macrophage (TAMs), including CD163+ TAMs, as compared to IDH-mutant astrocytoma. In contrast, IDH-mutant tumors had increased FOXP3+ immunosuppressive T regulatory cells. Transcriptional and protein level analyses in MAPK-driven tumors suggested an active cytotoxic T cell response with robust expression of granzyme B, present on 27% of CD8+ T cells, increased MHC class I expression, and altered cytokine profiles. Interestingly, MAPK-driven tumors also had increased expression of immunosuppressive molecules, including CXCR4, PD-L1, and VEGFA. Expression differences for cell surface and secreted proteins were confirmed in patient-derived tumor lines and functional relationships between altered chemokine expression and immune cell infiltration was investigated. Our data provide novel insights into the immune contexture of MAPK driven LGGs and suggest MAPK driven gliomas with biallelic inactivation of CDKN2A may be particularly vulnerable to immunotherapeutic modulation


2019 ◽  
Vol 8 (11) ◽  
pp. 1989 ◽  
Author(s):  
Tom J. Harryvan ◽  
Els M. E. Verdegaal ◽  
James C. H. Hardwick ◽  
Lukas J. A. C. Hawinkels ◽  
Sjoerd H. van der Burg

The introduction of a wide range of immunotherapies in clinical practice has revolutionized the treatment of cancer in the last decade. The majority of these therapeutic modalities are centered on reinvigorating a tumor-reactive cytotoxic T-cell response. While impressive clinical successes are obtained, the majority of cancer patients still fail to show a clinical response, despite the fact that their tumors express antigens that can be recognized by the immune system. This is due to a series of other cellular actors, present in or attracted towards the tumor microenvironment, including regulatory T-cells, myeloid-derived suppressor cells and cancer-associated fibroblasts (CAFs). As the main cellular constituent of the tumor-associated stroma, CAFs form a heterogeneous group of cells which can drive cancer cell invasion but can also impair the migration and activation of T-cells through direct and indirect mechanisms. This singles CAFs out as an important next target for further optimization of T-cell based immunotherapies. Here, we review the recent literature on the role of CAFs in orchestrating T-cell activation and migration within the tumor microenvironment and discuss potential avenues for targeting the interactions between fibroblasts and T-cells.


2020 ◽  
Author(s):  
Jaana Westmeier ◽  
Krystallenia Paniskaki ◽  
Zehra Karaköse ◽  
Tanja Werner ◽  
Kathrin Sutter ◽  
...  

AbstractSARS-CoV-2 infection induces a T cell response that most likely contributes to virus control in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients.Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2.Our data provides valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.ImportanceCytotoxic T cells are responsible for the elimination of infected cells and are key players for the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group in comparison to younger patients.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2655
Author(s):  
Inesa Navasardyan ◽  
Benjamin Bonavida

The T cell-mediated immune response is primarily involved in the fight against infectious diseases and cancer and its underlying mechanisms are complex. The anti-tumor T cell response is regulated by various T cell subsets and other cells and tissues in the tumor microenvironment (TME). Various mechanisms are involved in the regulation of these various effector cells. One mechanism is the iNOS/.NO that has been reported to be intimately involved in the regulation and differentiation of the various cells that regulate the anti-tumor CD8 T cells. Both endogenous and exogenous .NO are implicated in this regulation. Importantly, the exposure of T cells to .NO had different effects on the immune response, depending on the .NO concentration and time of exposure. For instance, iNOS in T cells regulates activation-induced cell death and inhibits Treg induction. Effector CD8 T cells exposed to .NO result in the upregulation of death receptors and enhance their anti-tumor cytotoxic activity. .NO-Tregs suppress CD4 Th17 cells and their differentiation. Myeloid-derived suppressor cells (MDSCs) expressing iNOS inhibit T cell functions via .NO and inhibit anti-tumor CD8 T cells. Therefore, both .NO donors and .NO inhibitors are potential therapeutics tailored to specific target cells that regulate the T cell effector anti-tumor response.


Gut ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 1525-1535 ◽  
Author(s):  
Sepideh Levander ◽  
Fredrik Holmström ◽  
Lars Frelin ◽  
Gustaf Ahlén ◽  
Daniel Rupp ◽  
...  

ObjectiveHCV is characterised by its ability to establish chronic infection in hepatocytes and to replicate in the presence of an inflammation. We mimicked this situation in vivo in immune-competent mice by syngeneic transplantation of HCV replicon-containing mouse hepatoma cells.DesignA total of 5 million H-2b positive Hep56.1D cells, carrying a subgenomic genotype (gt) 2a replicon (HCV replicon cells) or stably expressing comparable levels of the HCV NS3/4A protease/helicase complex (NS3/4A hepatoma cells), were injected subcutaneously into syngeneic H-2b-restricted mice. Kinetics of tumour growth, HCV RNA replication levels and HCV-specific immune responses were monitored. For immune monitoring, new H-2b-restricted cytotoxic T cell epitopes within the gt2a NS3/4A region were mapped. Immune mice were generated by DNA-based vaccination.ResultsHCV replicon and NS3/4A hepatoma cells generated solid tumours in vivo. Similar to what is seen in human HCV infection did HCV RNA replicate in the presence of inflammation. NS3/4A-specific CD8+ T cells seemed to transiently reduce HCV RNA levels. Both CD4+ and CD8+ T cells were required for protection against tumour growth. Vaccine-induced NS3/4A(gt2a)-specific T cells protected against HCV replicon tumours in wild-type, but not in HCV NS3/4A(gt1a)-transgenic mice with dysfunctional HCV-specific T cells. Importantly, as in human HCV infection, HCV replicon cells neither primed nor boosted a strong NS3/4A-specific T cell response.ConclusionSyngeneic transplantation of mouse HCV replicon cells into immune-competent animals mirrors many in vivo events in humans. This system is versatile and can be applied to any genetically modified H-2b-restricted mouse strain.


Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3199-3207 ◽  
Author(s):  
Gennadiy Zelinskyy ◽  
Kirsten K. Dietze ◽  
Yvonne P. Hüsecken ◽  
Simone Schimmer ◽  
Savita Nair ◽  
...  

AbstractCytotoxic CD8+ T cells control acute viremia in many viral infections. However, most viruses that establish chronic infections evade destruction by CD8+ T cells, and regulatory T cells (Treg) are thought to be involved in this immune evasion. We have infected transgenic mice, in which Treg can be selectively depleted, with Friend retrovirus (FV) to investigate the influence of Treg on pathogen-specific CD8+ T-cell responses in vivo. We observed that Treg expansion during acute infection was locally defined to organs with high viral loads and massive activation of virus-specific effector CD8+ T cells. Experimental ablation of Treg resulted in a significant increase of peak cytotoxic CD8+ T-cell responses against FV. In addition, it prevented the development of functional exhaustion of CD8+ T cells and significantly reduced FV loads in lymphatic organs. Surprisingly, despite the massive virus-specific CD8+ T-cell response after temporary Treg depletion, no evidence of immunopathology was found. These results demonstrate the important role of Treg in controlling acute retrovirus-specific CD8+ T-cell responses, and suggest that temporary manipulation of Treg might be a possible therapeutic approach in chronic infectious diseases.


2016 ◽  
Vol 90 (10) ◽  
pp. 5187-5199 ◽  
Author(s):  
Qingsong Qin ◽  
Shwetank ◽  
Elizabeth L. Frost ◽  
Saumya Maru ◽  
Aron E. Lukacher

ABSTRACTMouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127hiKLRG1lo) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G)in vitro. Using mice lacking IFN-αβ receptors (IFNAR−/−), we showed that type I IFNs played a role in controlling MPyV replicationin vivobut differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain.IMPORTANCEIsolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2010 ◽  
Vol 6 (8) ◽  
pp. e1001051 ◽  
Author(s):  
Elena Sandalova ◽  
Diletta Laccabue ◽  
Carolina Boni ◽  
Anthony T. Tan ◽  
Katja Fink ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3885
Author(s):  
Luana Madalena Sousa ◽  
Jani Sofia Almeida ◽  
Tânia Fortes-Andrade ◽  
Manuel Santos-Rosa ◽  
Paulo Freitas-Tavares ◽  
...  

Soft Tissue Sarcomas (STS) are a heterogeneous and rare group of tumors. Immune cells, soluble factors, and immune checkpoints are key elements of the complex tumor microenvironment. Monitoring these elements could be used to predict the outcome of the disease, the response to therapy, and lead to the development of new immunotherapeutic approaches. Tumor-infiltrating B cells, Natural Killer (NK) cells, tumor-associated neutrophils (TANs), and dendritic cells (DCs) were associated with a better outcome. On the contrary, tumor-associated macrophages (TAMs) were correlated with a poor outcome. The evaluation of peripheral blood immunological status in STS could also be important and is still underexplored. The increased lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-lymphocyte ratio (NLR), higher levels of monocytic myeloid-derived suppressor cells (M-MDSCs), and Tim-3 positive CD8 T cells appear to be negative prognostic markers. Meanwhile, NKG2D-positive CD8 T cells were correlated with a better outcome. Some soluble factors, such as cytokines, chemokines, growth factors, and immune checkpoints were associated with the prognosis. Similarly, the expression of immune-related genes in STS was also reviewed. Despite these efforts, only very little is known, and much research is still needed to clarify the role of the immune system in STS.


Sign in / Sign up

Export Citation Format

Share Document