scholarly journals Localized and Systemic Immune Responses against SARS-CoV-2 Following Mucosal Immunization

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 132
Author(s):  
Shaswath S. Chandrasekar ◽  
Yashdeep Phanse ◽  
Rachel E. Hildebrand ◽  
Mostafa Hanafy ◽  
Chia-Wei Wu ◽  
...  

The rapid transmission of SARS-CoV-2 in the USA and worldwide necessitates the development of multiple vaccines to combat the COVID-19 global pandemic. Previously, we showed that a particulate adjuvant system, quil-A-loaded chitosan (QAC) nanoparticles, can elicit robust immunity combined with plasmid vaccines when used against avian coronavirus. Here, we report on the immune responses elicited by mucosal homologous plasmid and a heterologous immunization strategy using a plasmid vaccine and a Modified Vaccinia Ankara (MVA) expressing SARS-CoV-2 spike (S) and nucleocapsid (N) antigens. Only the heterologous intranasal immunization strategy elicited neutralizing antibodies against SARS-CoV-2 in serum and bronchoalveolar lavage of mice, suggesting a protective vaccine. The same prime/boost strategy led to the induction of type 1 and type 17 T-cell responses and polyfunctional T-cells expressing multiple type 1 cytokines (e.g., IFN-γ, TNFα, IL-2) in the lungs and spleens of vaccinated mice. In contrast, the plasmid homologous vaccine strategy led to the induction of local mono and polyfunctional T-cells secreting IFN-γ. Outcomes of this study support the potential of QAC-nano vaccines to elicit significant mucosal immune responses against respiratory coronaviruses.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1654-1654
Author(s):  
Young-June Kim ◽  
Hal E. Broxmeyer

Abstract Abstract 1654 Poster Board I-680 CD8+ cytotoxic T cells are often ‘exhausted’ by programmed death-1 (PD-1) signaling, and subsequently the functions of these cells are terminated especially in a tumor environment or upon chronic HIV or HCV infection. Subsets of myeloid cells referred to as myeloid derived suppressor cells (MDSC) or regulatory dendritic cells (DCs) have been implicated in inducing exhaustion or termination of effector CD8+ T cells. To this end, we developed various myeloid-derived dendritic cell (DC) types in vitro from human CD14+ monocytes using M-CSF or GM-CSF in the presence of IL-4 with/without other cytokines, and characterized these DCs with respect to their capacity to induce PD-1 expression on and exhaustion of CD8+ T cells. We then assessed their impact on longevity of CD8+ T cells following coculture. Myeloid DCs developed in vitro with M-CSF and IL-4 for 5 days (referred to as M-DC) did not express ligand for PD-1 (PD-L1) nor did they induce PD-1 on CD8+ T cells. Thus, using M-DCs as starting cells, we sought determinant factors that could modulate M-DCs to express PD-L1 and thereby induce exhaustion of CD8+ T cells. In order to better monitor exhaustion processes, we incubated human peripheral CD8+ T cells for 5 days in the presence of IL-15, an important cytokine for maintaining viability, before coculture. M-DCs showed little impact on exhaustion or longevity of the CD8+ T cells. IL-10 converted M-DC into a distinct myeloid DC subset (referred to as M-DC/IL-10) with an ability to express PD-L1 as well as to induce PD-1 on cocultured CD8+ T cells. M-DC/IL-10 cells markedly suppressed proliferation of cocultured CD8+ T cells. M-DC/IL-10 cells were morphologically unique with many granules and filamentous structures around the cell periphery. These IL-10 effects on M-DC were completely abrogated in the presence of TNF-á. M-DC/IL-10 cells could be further differentiated into another myeloid DC subset in the presence of IFN-γ (referred to as M-DC/IL-10/IFN-γ) with an ability to express even higher levels of PD-L1 compared to M-DC/IL-10 cells. The most remarkable effect of M-DC/IL-10/IFN-γ cells on cocultured CD8+ T cells was a dramatic loss of CD8+ T cells. Light and confocal microscopic observations indicated that loss of CD8+ T cells was due to phagocytosis by M-DC/IL-10/IFN-γ cells. As IFN-γ, a type 1 cytokine which is induced in CD8+ T cells by IL-12 is essential for phagocytosis, we tested whether IL-12 treatment of CD8+ T cells could further enhance phagocytosis induced by M-DC/IL-10/IFN-γ cells. Indeed, IL-12 treatment greatly increased numbers of phagocytosed CD8+ T cells. In contrast, IL-4 treated CD8+ T cells became resistant to phagocytosis, suggesting IFN-γ producing (type1) CD8+ T cells may be primary target cells for the M-DC/IL-10 cells mediated phagocytosis. CD4+ T cells were not as susceptible as CD8+ T cells to phagocytosis. We failed to detect such phagocytic activity induced by prototype DCs generated with GM-CSF and IL-4. Phagocytic activity was not inhibited by various arginase-1 inhibitors suggesting that nitric oxide signaling may not mediate phagocytic activity. Neutralizing antibody to PD-L1 slightly but significantly lowered phagocytic activity suggesting that PD-L1/PD-1 interaction may be partially involved in this process. Myeloid DCs are thought to be immunogenic, actively inducing T cell immune responses. Our results demonstrate that myeloid DCs may play suppressive roles as well through induction of phagocytic activity, especially against IFN-γ producing CD8+ T cells. This may serve as a regulatory mechanism for type 1 CD8+ T cell immune responses in an IL-10 enriched microenvironment. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Tina Schmidt ◽  
Verena Klemis ◽  
David Schub ◽  
Janine Mihm ◽  
Franziska Hielscher ◽  
...  

Heterologous priming with the ChAdOx1-nCoV-19 vector-vaccine followed by boosting with an mRNA-vaccine is currently recommended in Germany, although data on immunogenicity and reactogenicity are not available. Here we show that the heterologous regimen induced spike-specific IgG, neutralizing antibodies, and spike-specific CD4 T-cells, which were significantly more pronounced than after homologous vector boost, and higher or comparable in magnitude to the homologous mRNA regimens. Moreover, spike-specific CD8 T-cell levels after heterologous vaccination were significantly higher than after both homologous regimens. Cytokine expression profiling showed a predominance of polyfunctional T-cells expressing IFNγ, TNFα and IL-2 with subtle differences between regimens. Both recipients of the homologous vector-regimen and the heterologous vector/mRNA-combination were most affected by the priming vector-vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA-boosting. Taken together, heterologous vector-mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profile. This knowledge will have implications for future vaccine strategies.


2001 ◽  
Vol 75 (13) ◽  
pp. 5879-5890 ◽  
Author(s):  
David C. Montefiori ◽  
Jeffrey T. Safrit ◽  
Shari L. Lydy ◽  
Ashley P. Barry ◽  
Miroslawa Bilska ◽  
...  

ABSTRACT The ability to generate antibodies that cross-neutralize diverse primary isolates is an important goal for human immunodeficiency virus type 1 (HIV-1) vaccine development. Most of the candidate HIV-1 vaccines tested in humans and nonhuman primates have failed in this regard. Past efforts have focused almost entirely on the envelope glycoproteins of a small number of T-cell line-adapted strains of the virus as immunogens. Here we assessed the immunogenicity of noninfectious virus-like particles (VLP) consisting of Gag, Pro (protease), and Env from R5 primary isolate HIV-1Bx08. Immunogens were delivered to rhesus macaques in the form of either purified VLP, recombinant DNA and canarypox (ALVAC) vectors engineered to express VLP, or a combination of these products. Seroconversion to Gag and Pro was detected in all of the immunized animals. Antibodies that could neutralize HIV-1Bx08 were detected in animals that received (i) coinoculations with DNABx08 and VLPBx08, (ii) DNABx08 followed by ALVACBx08 boosting, and (iii) VLPBx08 alone. The neutralizing antibodies were highly strain specific despite the fact that they did not appear to be directed to linear epitopes in the V3 loop. Virus-specific cellular immune responses also were generated, as judged by the presence of Gag-specific gamma interferon (IFN-γ)-producing cells. These cellular immune responses required the inclusion of DNABx08 in the immunization modality, since few or no IFN-γ-producing cells were detected in animals that received either VLPBx08 or ALVACBx08 alone. The results demonstrate the feasibility of generating neutralizing antibodies and cellular immune responses that target an R5 primary HIV-1 isolate by vaccination in primates.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009970
Author(s):  
Lindsay M. Snyder ◽  
Claire M. Doherty ◽  
Heather L. Mercer ◽  
Eric Y. Denkers

Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Jenny E. Suarez-Ramirez ◽  
Margarite L. Tarrio ◽  
Kwangsin Kim ◽  
Delia A. Demers ◽  
Christine A. Biron

ABSTRACT The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. IMPORTANCE Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.


2004 ◽  
Vol 72 (3) ◽  
pp. 1530-1536 ◽  
Author(s):  
Edna I. Gergel ◽  
Martha B. Furie

ABSTRACT Some diseases are characterized by prevalence in the affected tissues of type 1 T lymphocytes, which secrete gamma interferon (IFN-γ) and other proinflammatory cytokines. For example, type 1 T cells predominate in the lesions of patients with Lyme disease, which is caused by the bacterium Borrelia burgdorferi. We used an in vitro model of the blood vessel wall to test the premise that the vascular endothelium actively recruits circulating type 1 T cells to such lesions. When T lymphocytes isolated from human peripheral blood were examined, the populations that traversed monolayers of resting human umbilical vein endothelial cells (HUVEC) or HUVEC stimulated by interleukin-1β or B. burgdorferi were markedly enriched for T cells that produced IFN-γ compared to the initially added population of T cells. No enrichment was seen for cells that produced interleukin-4, a marker for type 2 T lymphocytes. Very late antigen-4 and CD11/CD18 integrins mediated passage of the T cells across both resting and stimulated HUVEC, and the endothelium-derived chemokine CCL2 (monocyte chemoattractant protein 1) was responsible for the enhanced migration of T cells across stimulated HUVEC. These results suggest that the vascular endothelium may contribute to the selective accumulation of type 1 T cells in certain pathological lesions, including those of Lyme disease.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2010 ◽  
Vol 78 (6) ◽  
pp. 2653-2666 ◽  
Author(s):  
Hideyuki Shiomi ◽  
Atsuhiro Masuda ◽  
Shin Nishiumi ◽  
Masayuki Nishida ◽  
Tetsuya Takagawa ◽  
...  

ABSTRACT Citrobacter rodentium, a murine model pathogen for enteropathogenic Escherichia coli, colonizes the surface of intestinal epithelial cells and causes mucosal inflammation. This bacterium is an ideal model for investigating pathogen-host immune interactions in the gut. It is well known that gene transcripts for Th1 cytokines are highly induced in colonic tissue from mice infected with C. rodentium. However, it remains to be seen whether the Th1 or Th2 cytokines produced by antigen-specific CD4+ T cells provide effective regulation of the host immune defense against C. rodentium infection. To investigate the antigen-specific immune responses, C. rodentium expressing ovalbumin (OVA-C. rodentium), a model antigen, was generated and used to define antigen-specific responses under gamma interferon (IFN-γ)-deficient or interleukin-4 (IL-4)-deficient conditions in vivo. The activation of antigen-specific CD4+ T cells and macrophage phagocytosis were evaluated in the presence of IFN-γ or IL-4 in vitro. IFN-γ-deficient mice exhibited a loss of body weight and a higher bacterial concentration in feces during OVA-C. rodentium infection than C57BL/6 (wild type) or IL-4-deficient mice. This occurred through the decreased efficiency of macrophage phagocytosis and the activation of antigen-specific CD4+ T cells. Furthermore, a deficiency in antigen-specific CD4+ T-cell-expressed IFN-γ led to a higher susceptibility to mucosal and gut-derived systemic OVA-C. rodentium infection. These results show that the IFN-γ produced by antigen-specific CD4+ T cells plays an important role in the defense against C. rodentium.


2001 ◽  
Vol 69 (10) ◽  
pp. 6064-6073 ◽  
Author(s):  
Cinzia Retini ◽  
Thomas R. Kozel ◽  
Donatella Pietrella ◽  
Claudia Monari ◽  
Francesco Bistoni ◽  
...  

ABSTRACT We previously demonstrated that the principal component of capsular material of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces interleukin-10 (IL-10) secretion from human monocytes. Here we report that encapsulation of the yeast with GXM is able to down-regulate interleukin-12 (IL-12) production by monocytes that would normally occur in the absence of encapsulation. This phenomenon appeared to be the result of inhibition of the phagocytic process by encapsulation with GXM as well as of negative signals such as IL-10 secretion produced by interaction of GXM with leukocytes. Decreased secretion of IL-12 correlated with decreased release of gamma interferon (IFN-γ) from T cells, suggesting a role for encapsulation with GXM in hindering a T helper type 1 (Th1) response. This is supported by the ability of encapsulation with GXM to limit increased expression of B7-1 costimulatory molecules that otherwise might limit IL-10 secretion. Endogenous IL-10 played a critical role in modulatory activity associated with encapsulation with GXM. Blocking IL-10 with monoclonal antibody to IL-10 resulted in increased (i) IL-12 secretion, (ii) IFN-γ release from T cells, and (iii) killing of C. neoformans by monocytes. These results suggest that encapsulation with GXM limits development of a protective Th1-type response, an inhibitory process in which IL-10 plays a critical role. Scavengers of GXM and/or IL-10 could be useful in a protective Th1-type response in patients with cryptococcosis.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


Sign in / Sign up

Export Citation Format

Share Document