scholarly journals The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives

Vehicles ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 618-635
Author(s):  
Ahmad Al-Buenain ◽  
Saeed Al-Muhannadi ◽  
Mohammad Falamarzi ◽  
Adeeb A. Kutty ◽  
Murat Kucukvar ◽  
...  

Electric mobility is at the forefront of innovation. Cutting down greenhouse gases when low-carbon electricity sources are maintained has answered the concerns of skeptics when switching to electric mobility. This paper presents a life-cycle-based comparative study between the electric and conventional gasoline vehicles with respect to their environmental performance, taking the case of Qatar. A well-to-wheel life cycle assessment is used to understand the carbon footprint associated with the use of alternative mobility when powered by non-renewable energy sources such as natural gas for electricity production. A survey was also conducted to evaluate the economic and practical feasibility of the use of electric vehicles in Qatar. The analysis showed that electric vehicles (EVs) have passed conventional gasoline vehicles with a minimum difference between them of 12,000 gCO2eq/100 km traveled. This difference can roughly accommodate two additional subcompact electric vehicles on the roads of Qatar. Even though Qatar is producing all of its electricity from natural gas, EVs are still producing much less carbon footprint into the atmosphere with the results showing that almost identical alternatives produce triple the amount of GHG emissions. The results of the survey showed that, despite promising results shown in switching to carbon-neutral mobility solutions, a lack of willingness prevails within the State of Qatar to incline towards electric mobility among users. This implies that Qatar has to spend a lot of time and resources to achieve its ambitious goal to decarbonize mobility on roads with 10% electric vehicles by 2030. This research highlights the need for more practical incentives and generous subsidies by the government of Qatar on e-mobility solutions to switch the transportation system into an eco-friendly one.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2916
Author(s):  
Jérôme Payet ◽  
Titouan Greffe

Worldwide electricity consumption increases by 2.6% each year. Greenhouse gas emissions due to electricity production raise by 2.1% per year on average. The development of efficient low-carbon-footprint renewable energy systems is urgently needed. CPVMatch investigates the feasibility of mirror or lens-based High Concentration Photovoltaic (HCPV) systems. Thanks to innovative four junction solar cells, new glass coatings, Position Sensitive Detectors (PSD), and DC/DC converters, it is possible to reach concentration levels higher than 800× and a module efficiency between 36.7% and 41.6%. From a circular economy’s standpoint, the use of concentration technologies lowers the need in active material, increases recyclability, and reduces the risk of material contamination. By using the Life Cycle Assessment method, it is demonstrated that HCPV presents a carbon footprint ranking between 16.4 and 18.4 g CO2-eq/kWh. A comparison with other energy means for 16 impact categories including primary energy demand and particle emissions points out that the environmental footprint of HCPV is typically 50 to 100 times lower than fossil fuels footprint. HCPV’s footprint is also three times lower than that of crystalline photovoltaic solutions and is close to the environmental performance of wind power and hydropower.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Amela Ajanovic ◽  
Marina Siebenhofer ◽  
Reinhard Haas

Environmental problems such as air pollution and greenhouse gas emissions are especially challenging in urban areas. Electric mobility in different forms may be a solution. While in recent years a major focus was put on private electric vehicles, e-mobility in public transport is already a very well-established and mature technology with a long history. The core objective of this paper is to analyze the economics of e-mobility in the Austrian capital of Vienna and the corresponding impact on the environment. In this paper, the historical developments, policy framework and scenarios for the future development of mobility in Vienna up to 2030 are presented. A major result shows that in an ambitious scenario for the deployment of battery electric vehicles, the total energy demand in road transport can be reduced by about 60% in 2030 compared to 2018. The major conclusion is that the policies, especially subsidies and emission-free zones will have the largest impact on the future development of private and public e-mobility in Vienna. Regarding the environmental performance, the most important is to ensure that a very high share of electricity used for electric mobility is generated from renewable energy sources.


2021 ◽  
Vol 134 (3) ◽  
pp. 3-10
Author(s):  
D. M. Grigoyeva ◽  
◽  
E. B. Fedorova ◽  

To meet the terms of the Paris Agreement, it will be necessary to restructure the world economy, make an energy transition to low-carbon development, which will subsequently affect the conventional energy sources industry and, in particular, the liquefied natural gas (LNG) sector. The article provides an overview of the prospects for reducing the carbon footprint in the gas industry. Technical, political and economic measures of decarbonization formation are given. The prospects of the natural gas export market for Russia are outlined. The classification of technologies related to carbon dioxide capture is presented. Special attention is paid to reducing greenhouse gas emissions in the LNG industry.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaoqin Si ◽  
Rui Lu ◽  
Zhitong Zhao ◽  
Xiaofeng Yang ◽  
Feng Wang ◽  
...  

AbstractNatural gas is one of the foremost basic energy sources on earth. Although biological process appears as promising valorization routes to transfer biomass to sustainable methane, the recalcitrance of lignocellulosic biomass is the major limitation for the production of mixing gas to meet the natural gas composition of pipeline transportation. Here we develop a catalytic-drive approach to directly transfer solid biomass to bio-natural gas which can be suitable for the current infrastructure. A catalyst with Ni2Al3 alloy phase enables nearly complete conversion of various agricultural and forestry residues, the total carbon yield of gas products reaches up to 93% after several hours at relative low-temperature (300 degrees Celsius). And the catalyst shows powerful processing capability for the production of natural gas during thirty cycles. A low-carbon footprint is estimated by a preliminary life cycle assessment, especially for the low hydrogen pressure and non-fossil hydrogen, and technical economic analysis predicts that this process is an economically competitive production process.


Author(s):  
Alberto Tama Franco

Wind technology is considered to be among the most promising types of renewable energy sources, and due to high oil prices and growing concerns about climate change and energy security, it has been the subject of extensive considerations in recent years, including questions related to the relative sustainability of electricity production when the manufacturing, assembly, transportation and dismantling processes of these facilities are taken into account. The present article evaluates the environmental impacts, carbon emissions and water consumption, derived from the production of electric energy of the Villonaco wind farm, located in Loja-Ecuador, during its entire life cycle, using the Life Cycle Analysis method. Finally, it is concluded that wind energy has greater environmental advantages, since it has lower values of carbon and water footprints than other energy sources. Additionally, with the techniques Cumulative Energy Demand and Energy Return on Investment, sustainability in the production of electricity from wind power in Ecuador is demonstrated; and, that due to issues of vulnerability to climate change, the diversification of its energy mix is essential considering the inclusion of non-conventional renewable sources such as solar or wind, this being the only way to reduce both the carbon footprint and the water supply power.


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


2019 ◽  
Vol 2019 (4) ◽  
pp. 122-139
Author(s):  
Olga Kudryavtseva ◽  
Elena Mitenkova ◽  
Olga Malikova ◽  
Maksim Golovin

The article is dedicated to the analysis of the development of alternative energy in Russia as one of the key factors of forming a low-carbon economy model. Authors reviewed the main stages of forming the institutional environment which regulated the process of the transition to a low-carbon economy model and a wider use of alternative energy including renewable energy sources (RES).Authors analyzed the renewable energy industry in Russia. The empirical base of the study consists of auctions results conducted in the framework of the government support of RES during 2013-2018 and the information system “SPARK”. Using the Concentration ratio, the Herfindahl-Hirschman and the Hall-Tideman indices authors revealed a high level of concentration in this industry in the context of each type of RES. In addition, an analysis of the ownership structure of companies has shown that the most successful companies are companies in the form of partnerships between the state, a Russian company and / or a foreign company.


Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Simona Jursova ◽  
Dorota Burchart-Korol ◽  
Pavlina Pustejovska

In the light of recent developments regarding electric vehicle market share, we assess the carbon footprint and water footprint of electric vehicles and provide a comparative analysis of energy use from the grid to charge electric vehicle batteries in the Czech Republic. The analysis builds on the electricity generation forecast for the Czech Republic for 2015–2050. The impact of different sources of electricity supply on carbon and water footprints were analyzed based on electricity generation by source for the period. Within the Life Cycle Assessment (LCA), the carbon footprint was calculated using the Intergovernmental Panel on Climate Change (IPCC) method, while the water footprint was determined by the Water Scarcity method. The computational LCA model was provided by the SimaPro v. 8.5 package with the Ecoinvent v. 3 database. The functional unit of study was running an electric vehicle over 100 km. The system boundary covered an electric vehicle life cycle from cradle to grave. For the analysis, we chose a vehicle powered by a lithium-ion battery with assumed consumption 19.9 kWh/100 km. The results show that electricity generated to charge electric vehicle batteries is the main determinant of carbon and water footprints related to electric vehicles in the Czech Republic. Another important factor is passenger car production. Nuclear power is the main determinant of the water footprint for the current and future electric vehicle charging, while, currently, lignite and hard coal are the main determinants of carbon footprint.


2019 ◽  
Vol 11 (6) ◽  
pp. 1810
Author(s):  
Hua-Yueh Liu

Military government was lifted from Kinmen in 1992. The opening-up of cross-strait relations transformed the island into a tourist destination. This transformation led to electricity and water shortages in Kinmen. With the reduction in the number of troops, military facilities fell into disuse and are now being released for local government use. The aim of this project was to monitor the carbon footprint of a reused military facility during renovation of the facility. The LCBA-Neuma system, a local carbon survey software developed by the Low Carbon Building Alliance (LCBA) and National Cheng Kung University in Taiwan, was used in this project. The system analyzes the carbon footprint of the various phases of the building life cycle (LC) during renovation and carbon compensation strategies were employed to achieve the low carbon target. This project has pioneered the transformation of a disused military facility using this approach. The carbon footprint of energy uses during post-construction operation (CFeu) accounted for the majority of carbon emissions among all stages, at 1,088,632.19 kgCO2e/60y, while the carbon footprint of the new building materials (CFm) was the second highest, at 214,983.66 kgCO2e/60y. Installation of a solar cell system of 25.2 kWp on the rooftop as a carbon offset measure compensated for an estimated 66.1% of the total life-cycle carbon emissions. The findings of this study show that the process of reusing old military facilities can achieve the ultimate goal of zero carbon construction and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document