scholarly journals Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms

2020 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Anna Vidal ◽  
Laia Aguirre ◽  
Chiara Seminati ◽  
Montse Tello ◽  
Noelia Redondo ◽  
...  

Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.

2020 ◽  
Vol 7 ◽  
Author(s):  
David Ortega-Paredes ◽  
Sofía de Janon ◽  
Fernando Villavicencio ◽  
Katherine Jaramillo Ruales ◽  
Kenny De La Torre ◽  
...  

Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.


2018 ◽  
Vol 46 (1) ◽  
pp. 8 ◽  
Author(s):  
Aniroot Nuangmek ◽  
Suvichai Rojanasthien ◽  
Suwit Chotinun ◽  
Panuwat Yamsakul ◽  
Pakpoom Tadee ◽  
...  

Background: Study of drug resistance of commensal bacteria in both humans and animals can determine the scale of the drug resistance problem. Usage of antimicrobials to treat infections in humans and animals has generated extensive antimicrobial pressure not only on targeted pathogens but also on commensal bacteria. Commensal Escherichia coli appears to be the major reservoir for resistant genes implicated in the transmission of genetic traits from one bacterium to another. Antimicrobial resistance in Enterobacteriaceae has increased dramatically worldwide in the last decade. An increasing number of community-onset extended-spectrum beta-lactamase (ESBL)-producing bacterial infections, especially those caused by ESBL-producing E. coli, have been reported in many countries, including Thailand. Moreover, ESBL-producing E. coli have been widely detected in food-producing animals and the environment. The increased use of ESBLs in food animals is a serious public health problem. The objective of the study was to determine the prevalence and antimicrobial resistance pattern of ESBL-producing E. coli isolated from pigs, layers, farm workers and stagnant water, in order to increase awareness about antimicrobial usage on farms and to minimize the expansion of the antimicrobial resistance phenomenon in farm settings.Materials, Methods & Results: A total of 588 samples were collected from 107 pig farms and 89 layer farms in Chiang Mai–Lamphun and Chon Buri provinces during May 2015-April 2016. Double-disk diffusion method according to EUCAST (European Committee on Antimicrobial Susceptibility Testing) guidelines was used for detection. The results demonstrated that 36.7% (216/588) of samples were ESBL-producing E. coli-positive, including rectal swabs 74.8% (80/107), pig farm worker stool swabs 57.0% (61/107), stagnant water on pig farms 21.5% (23/107), healthy layer rectal swabs 6.7% (6/89) and layer farm worker stool swabs 51.7% (46/89). Most of the isolates were resistant against ampicillin (99.5%), followed by erythromycin (98.6%) and ceftriaxone (96.3%). All of them were classified as multidrug-resistant strains. Moreover, AMP-CRO-E-TE-C-SXT-CN was the most frequent phenotype pattern detected in animals, humans and the environment, followed by AMP-CRO-E-TE-C-SXT-NA-CN.Discussion: The present study offers clear evidence that the prevalence of ESBL-producing E. coli in healthy pigs is higher than in layers. One possible explanation is that a large amount and variety of antimicrobials are used on pig farms, resulting in a common and significant source of drug-resistant ESBL-producing E. coli. The lower incidence of ESBL-producing E. coli in samples from a pig farm environment than in samples of animal origin indicate that pigs are a reservoir of a reservoir for resistant bacteria and a source of environmental contamination. Antimicrobial resistance patterns of ESBLproducing E. coli detected in all sample types and study locations were quite similar. In almost all ESBL-producing E. coli isolates, resistance was shown against ampicillin, erythromycin, ceftriaxone, tetracycline and chloramphenicol. Moreover, multidrug resistance was found in all isolates of ESBL-producing E. coli. The differences in antimicrobial agent resistance patterns can be used to differentiate sources by employing analytical tools such as discriminant function analysis. A molecular typing protocol is recommended for use in a discriminant function analysis for pattern determination of pathogen spreading. However, genetic fingerprinting techniques for microbial source tracking are more expensive, and facilities with appropriate equipment and expertise are required.


2016 ◽  
Vol 8 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Dalibor Todorović ◽  
Maja Velhner ◽  
Dragana Ljubojević ◽  
Marko Pajić ◽  
Dubravka Milanov

The resistance of Escherichia coli (E. coli) to fluoroquinolones has become a serious issue on large pig farms worldwide, since these antimicrobial agents are widely used in the control of various diseases such as neonatal diarrhea, post weaning diarrhea, the edema disease as well as others. Being a frequent inhabitant of the digestive tract, E.coli is oft en exposed to antimicrobial agents, which are used to treat various infections. Uncontrolled application of fluoroquinolones has led to the emergence of resistant pathogenic strains as well as commensals. The spread of resistant strains is mostly found in animal and human food production chains, which are potentially huge threat for the general population. The resistance to fluoroquinolones may very oft en be combined with the resistance to other classes of antibiotics. Therefore, the use of fluoroquinolones for treating uncomplicated infections in pigs must be under strict control or completely banned. In this paper, we compared the results from available literature addressing the prevalence of antimicrobial resistance to fl uoroquinolones in E. coli strains both worldwide and in countries from the nearby region.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolle Lima Barbieri ◽  
Ramon Loureiro Pimenta ◽  
Dayanne Araujo de Melo ◽  
Lisa K. Nolan ◽  
Miliane Moreira Soares de Souza ◽  
...  

Colisitin-associated resistance in bacteria of food producing animals has gained significant attention with the mcr gene being linked with resistance. Recently, newer variants of mcr have emerged with more than nine variants currently recognized. Reports of mcr associated resistance in Escherichia coli of poultry appear to be relatively limited, but its prevalence requires assessment since poultry is one of the most important and cheapest sources of the world’s protein and the emergence of resistance could limit our ability to treat disease outbreaks. Here, 107 E. coli isolates from production poultry were screened for the presence of mcr 1–9. The isolates were collected between April 2015 and June 2016 from broiler chickens and free-range layer hens in Rio de Janeiro, Brazil. All isolates were recovered from the trachea and cloaca of healthy birds and an additional two isolates were recovered from sick birds diagnosed with colibacillosis. All isolates were screened for the presence of mcr-1 to 9 using PCR and Sanger sequencing for confirmation of positive genes. Additionally, pulse field gel electrophoresis (PFGE) analysis, avian fecal E. coli (APEC) virulence associated gene screening, plasmid replicon typing and antimicrobial resistance phenotype and resistance gene screening, were also carried out to further characterize these isolates. The mcr-1 gene was detected in 62 (57.9%) isolates (61 healthy and 1 APEC) and the mcr-5 gene was detected in 3 (2.8%) isolates; mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, and mcr-9 were not detected in any isolate. In addition, mcr 1 and 5 positive isolates were phenotypically resistant to colistin using the agar dilution assay (> 8ug/ml). PFGE analysis found that most of the isolates screened had unique fingerprints suggesting that the emergence of colistin resistance was not the result of clonal dissemination. Plasmid replicon types IncI2, FIB, and B/O were found in 38, 36, and 34% of the mcr positive isolates and were the most prevalent replicon types detected; tetA and tetB (32 and 26%, respectively) were the most prevalent antimicrobial resistance genes detected and iutA, was the most prevalent APEC virulence associated gene, detected in 50% of the isolates. Approximately 32% of the isolates examined could be classified as APEC-like, based on the presence of 3 or more genes of APEC virulence associated path panel (iroN, ompT, hlyF, iss, iutA). This study has identified a high prevalence of mcr-1 in poultry isolates in Brazil, suggesting that animal husbandry practices could result in a potential source of resistance to the human food chain in countries where application of colistin in animal health is practiced. Emergence of the mcr gene and associated colisitin resistance in production poultry warrants continued monitoring from the animal health and human health perspective.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oscar Mencía-Ares ◽  
Héctor Argüello ◽  
Héctor Puente ◽  
Manuel Gómez-García ◽  
Edgar G. Manzanilla ◽  
...  

Abstract Background Antimicrobial resistance (AMR) is a global public health threat consequence of antimicrobial use (AMU) in human and animal medicine. In food-producing animals factors such as management, husbandry or biosecurity may impact AMU. Organic and extensive Iberian swine productions are based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the AMR in indicator bacteria. Here, we evaluate the usefulness of commensal Escherichia coli and Enterococcus spp. isolates as AMR bioindicators when comparing 37 Spanish pig farms from both intensive and organic-extensive production systems, considering the effect of AMU and biosecurity measures, the last only on intensive farms. Results The production system was the main factor contributing to explain the AMR differences in E. coli and Enterococcus spp. In both bacteria, the pansusceptible phenotype was more common (p < 0.001) on organic-extensive farms when compared to intensive herds. The microbiological resistance in commensal E. coli was, for most of the antimicrobials evaluated, significantly higher (p < 0.05) on intensive farms. In enterococci, the lincosamides usage revealed the association between AMR and AMU, with an increase in the AMR for erythromycin (p < 0.01), quinupristin-dalfopristin (p < 0.01) and the multidrug-resistant (MDR) phenotype (p < 0.05). The biosecurity measures implemented on intensive farms influenced the AMR of these bioindicators, with a slightly lower resistance to sulfamethoxazole (p < 0.01) and the MDR phenotype (p < 0.05) in E. coli isolated from farms with better cleaning and disinfection protocols. On these intensive farms, we also observed that larger herds had a higher biosecurity when compared to smaller farms (p < 0.01), with no significant associations between AMU and the biosecurity scores. Conclusions Overall, this study evidences that the production system and, to a lesser extent, the biosecurity measures, contribute to the AMR development in commensal E. coli and Enterococcus spp., with antimicrobial usage as the main differential factor, and demonstrates the potential value of these bacteria as bioindicators on pig farms in AMR surveillance programs.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 432
Author(s):  
Montira Yossapol ◽  
Miku Yamamoto ◽  
Michiyo Sugiyama ◽  
Justice Opare Odoi ◽  
Tsutomu Omatsu ◽  
...  

Antimicrobial-resistant (AMR) bacteria affect human and animal health worldwide. Here, CTX-M-14-producing Escherichia coli isolates were isolated from Siberian weasels (Mustela sibirica) that were captured on a veterinary campus. To clarify the source of bacteria in the weasels, we examined the domestic animals reared in seven facilities on the campus. Extended-spectrum β-lactamase (ESBL)-producing E. coli were isolated on deoxycholate hydrogen sulfide lactose agar, containing cephalexin (50 μg/mL) or cefotaxime (2 μg/mL), and were characterized with antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), replicon typing, and β-lactamase typing analyses. Next-generation sequencing of the ESBL-encoding plasmids was also performed. CTX-M-14 producers isolated from both domestic animals and weasels were classified into six clusters with seven PFGE profiles. The PFGE and antimicrobial resistance profiles were characterized by the animal facility. All CTX-M-14 plasmids belonged to the IncI1 type with a similar size (98.9–99.3 kb), except for one plasmid that was 105.5 kb in length. The unweighted pair group method with arithmetic mean (UPGMA) revealed that the CTX-M-14 plasmid in the weasel isolates might have the same origin as the CTX-M-14 plasmid in the domestic animals. Our findings shed further light on the association of antimicrobial resistance between wild and domestic animals.


2016 ◽  
Vol 82 (24) ◽  
pp. 7197-7204 ◽  
Author(s):  
Getahun E. Agga ◽  
John W. Schmidt ◽  
Terrance M. Arthur

ABSTRACTConcerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr)Escherichia coliand third-generation cephalosporin-resistant (3GCr)E. coli. We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal health, TETrE. coli, and 3GCrE. coli. A control group of cattle (n= 150) received no CTC, while a CTC group (n= 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimicrobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal swab and pen surface occurrences of genericE. coli(isolated on media that did not contain antimicrobials of interest and were not isolated based on any specific resistance), TETrE. coli, and 3GCrE. coliwere determined on five sampling occasions: arrival at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETrE. coliconcentrations were higher for the CTC group than the control group (P< 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETrE. coliconcentrations did not differ between groups. 3GCrE. colioccurrences did not differ between control and CTC groups on any sampling occasion. For both groups, generic, TETr, and 3GCrE. colioccurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC contributed more significantly to antimicrobial-resistantE. colioccurrence.IMPORTANCEThe occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock production to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Administration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistantE. coli.


2021 ◽  
Author(s):  
Zhong Peng ◽  
Zizhe Hu ◽  
Zugang Li ◽  
Xiaoxue Zhang ◽  
Chaoying Jia ◽  
...  

Abstract Antimicrobial resistance (AMR) is one of the most urgent threats to the global public health, and the expanding use of antimicrobials in food animals is considered as a main reason for the worldwide rapid increasing of AMR. However, AMR in animals in many regions are poorly documented. China is the largest pig-rearing and pork consumption country in the world. In the present study, we identified AMR in pig farms from all provinces (including Tibet and Qinghai) of mainland China by investigation of a common indicator bacterium Escherichia coli from both pigs and the breeding environmental samples. A total of 2693 samples from pigs and environments in 67 pig farms in all 31 provinces of mainland China were collected between 1 October 2018 to 30 September 2019, and a total of 1871 E. coli strains were isolated. By testing the susceptibility of these 1871 E. coli isolates on 28 types of antibiotics that commonly used in both human and veterinary medicine, we found that resistance to tetracycline (96.26%), chloramphenicol (82.04%), moxifloxacin (81.56%), and trimethoprim/sulfamethoxazole (80.38%) were the broad phenotypes among these E. coli isolates from pig farms in China. A proportion of E. coli isolates were resistant to colistin (3.79%), carbapenems (imipenem [2.62%], meropenem [2.30%], ertapenem [2.46%]), and broad-spectrum-cephalosporins (ceftriaxone [29.56%], cefepime [14.00%]). More than 70% of the isolates displayed multidrug-resistant (MDR), and/or extensively drug-resistant (XDR) phenotypes, and MDR/XDR-E. coli was observed in pig farms in all provinces of mainland China. We also systematically revealed the distribution of O-serogroups, sequence types, resistance genes, virulence factors encoding genes, and putative plasmids of MDR/XDR-E. coli in pig farms from different provinces of China, and partially characterized the pathotypes of certain MDR/XDR-E. coli strains. In addition, the genetic transmission basis of the blaNDM, mcr, ESBL-encoding, fluoroquinolone-resistance, and tetX genes were addressed in this study. Most importantly, we suggested a very high genetic propensity of the pig farm-sourced MDR/XDR-E. coli in spreading into humans. To the best of our knowledge, this is the first study on a national scale that the resistance phenotypes and population genomics of E. coli in pig farms in China are revealed. Our data presented herein will help understand the current profile of AMR in pigs and also provide reference for policy formulation of AMR control action in livestock in China.


2019 ◽  
Vol 67 (4) ◽  
pp. 477-488 ◽  
Author(s):  
Laila Ben Said ◽  
Ahlem Jouini ◽  
Ismail Fliss ◽  
Carmen Torres ◽  
Naouel Klibi

The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the blaCMY-2 and blaTEM-1 genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 945
Author(s):  
Sien De Koster ◽  
Moniek Ringenier ◽  
Christine Lammens ◽  
Arjan Stegeman ◽  
Tijs Tobias ◽  
...  

Background. The use of antibiotics in food production selects for resistant bacteria and may cause a threat to human and animal health. Belgium and the Netherlands have one of the highest densities of broilers and pigs in Europe, making active monitoring of antibiotic use and resistance in this region vital. Objectives. This study aimed to quantify ESBL-producing (ESBL-E. coli), carbapenem- and ciprofloxacin-resistant (CiproR) Escherichia coli in animal feces on broiler and pig farms with a history of high antibiotic use in Belgium and the Netherlands. Methods. A total of 779 broiler and 817 pig fecal samples, collected from 29 conventional broiler and 31 multiplier pig farms in the cross-border region of Belgium and the Netherlands, were screened for the presence of antibiotic-resistant E. coli using selective culturing. Results. Carbapenem-resistant E. coli were not detected. ESBL-E. coli were remarkably more prevalent in samples from Belgian than Dutch farms. However, CiproR-E. coli were highly prevalent in broilers of both countries. The percentage of samples with ESBL- and CiproR-E. coli was lower in pig compared to poultry farms and varied between farms. No clear association with the on-farm antibiotic use in the year preceding sampling was observed. Multidrug resistance was frequently observed in samples from both countries, but ESBL-production in combination with ciprofloxacin resistance was higher in samples from Belgium. Conclusions. This study demonstrated marked differences in antibiotic resistance between countries, farms and within farms. The observed variation cannot be explained straightforward by prior quantity of antibiotic use suggesting that it results from more complex interactions that warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document