scholarly journals Resilience to Cope with Climate Change in Urban Areas—A Multisectorial Approach Focusing on Water—The RESCCUE Project

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1356 ◽  
Author(s):  
Marc Velasco ◽  
Beniamino Russo ◽  
Montserrat Martínez ◽  
Pere Malgrat ◽  
Robert Monjo ◽  
...  

The RESCCUE Project is an H2020 research project that aims to help cities around the world to become more resilient to physical, social, and economic challenges, using the water sector as the central point of the approach. RESCCUE will generate models and tools to bring this objective to practice, while delivering a framework enabling city resilience assessment, planning and management. This will be achieved by integrating software tools, methods, and new knowledge related to the detailed urban services performance into novel and promising loosely coupled models (integrated models), multi-risk assessment method, and a comprehensive resilience platform. These tools will allow urban resilience assessment from a multisectorial approach, for current and future climate change scenarios, including multiple hazards and cascading effects. The RESCCUE approach will be implemented in three EU cities (Barcelona, Bristol, and Lisbon) and, with the support of UN-Habitat, disseminate their results among other cities belonging to major international networks. The aim of this paper is to present the main goals of this project, as well as the approach followed and the main expected results after the four years of implementation, so other cities around the world can use the RESCCUE approach to increase their resilience.

2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2012 ◽  
Vol 3 (2) ◽  
pp. 110-124 ◽  
Author(s):  
Mohammad Adnan Rajib ◽  
Md. Mujibur Rahman ◽  
Edward A. McBean

With prevailing changes in climate and increasing population, small drinking water systems in the climate-vulnerable parts of the world have already exhibited and left traces of prominent unpredictability of water availability, in terms of both water quantity and water quality. Dimensions of climate change, such as large variability in precipitation pattern, rise in temperature and associated increase in evaporation rates, as well as their consequences, are surely going to affect the unsophisticated, small drinking water systems which are serving mass populations in South Asia and many other parts of the world. This research paper aims to analyze the possible extents of vulnerability of some selected small drinking water systems currently being operated in the coastal areas of Bangladesh as a result of the predicted changes in climatic parameters such as temperature, precipitation and evaporation along with sea level rise and extreme events such as cyclones. However, to examine possible future climate change scenarios, four Global Climate Models have been applied in developing projections of different climatic parameters for Bangladesh. Based on the projections of climate models and associated key vulnerabilities being assessed, this paper features the evaluation of potential technological resilience of specific small drinking water systems from the Bangladesh perspective.


2014 ◽  
Vol 71 (5) ◽  
pp. 653-660 ◽  
Author(s):  
M. Jung ◽  
H. Kim ◽  
K. J. B. Mallari ◽  
G. Pak ◽  
J. Yoon

Both water quantity and quality are impacted by climate change. In addition, rapid urbanization has also brought an immeasurable loss of life and property resulting from floods. Hence, there is a need to predict changes in rainfall events to effectively design stormwater infrastructure to protect urban areas from disaster. This study develops a framework for predicting future short duration rainfall intensity and examining the effects of climate change on urban runoff in the Gunja Drainage Basin. Non-stationarities in rainfall records are first analysed using trend analysis to extrapolate future climate change scenarios. The US Environmental Protection Agency Storm Water Management Model (SWMM) was used for single event simulation of runoff quantity from the study area. For the 1-hour and 24-hour durations, statistically significant upward trends were observed. Although the 10-minute duration was only nearly significant at the 90% level, the steepest slope was observed for this short duration. Moreover, it was observed that the simulated peak discharge from SWMM increases as the short duration rainfall intensity increases. The proposed framework is thought to provide a means to review the current design of stormwater infrastructures to determine their capacity, along with consideration of climate change impact.


2020 ◽  
Vol 12 (23) ◽  
pp. 9881
Author(s):  
Marc Velasco ◽  
Beniamino Russo ◽  
Robert Monjo ◽  
César Paradinas ◽  
Slobodan Djordjević ◽  
...  

RESCCUE is an H2020 research project that aims to help cities around the world to become more resilient to physical, social, and economic challenges, using the water sector as the central point of the approach. Since 2016, RESCCUE has been developing methodologies and tools to support cities increase their resilience. The three RESCCUE cities, Barcelona, Bristol, and Lisbon, have become a testing platform for the cutting-edge technologies developed in RESCCUE but these are also ready to be deployed to different types of cities, with different climate change pressures. This paper presents some of the main outputs generated by RESCCUE. From climate change scenarios to dissemination tools, and from sectorial models to Resilience Action Plans (RAPs), the outputs that have been produced are very diverse, but special focus is put on the urban water cycle and urban floods. All the project results have a common goal: to increase the resilience of cities from around the world, by offering the methodologies and tools so anyone can take advantage of using them and replicate the RESCCUE results.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Sign in / Sign up

Export Citation Format

Share Document