scholarly journals Experimental Investigation of Flood Energy Dissipation by Single and Hybrid Defense System

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1971
Author(s):  
Afzal Ahmed ◽  
Abdul Razzaq Ghumman

In this study, a series of laboratory experiments were conducted to investigate the energy loss through the hybrid defense system (HDS) in the order of dike, moat, and emergent vegetation in steady subcritical flow conditions. The results of HDS were compared with a single defense system (SDS) comprising only vegetation (OV). The dimensions of dike were kept constant while two different shapes (trapezoidal and rectangular) of moat were considered. The impacts of vegetation of variable thickness and density were investigated. Two combinations of HDS were investigated including the combination of dike and vegetation (DV) and the combination of dike, moat, and vegetation (DMV). The effect of backwater rise due to the vegetation, hydraulic jump formation and the impact of the arrival time of floodwater on energy dissipation were investigated. It was observed that on the upstream side of obstructions, the backwater depth increased by increasing the Froude number in both the SDS and HDS. The hydraulic jump observed in HDS was classified and the energy dissipation due to it was calculated. Under various conditions investigated in this paper, the maximum average energy dissipation was 32% in SDS and 46% in HDS. The trapezoidal moat performed better than rectangular moat as energy dissipater. The delay time was also greater with trapezoidal moat as compared to that in rectangular one. The maximum delay time was 140 s in the case of HDS. Hence, the hybrid defense system offered maximum resistance to the flow of water, thus causing a significant energy loss. For each case of SDS and HDS, empirical equations were developed by regression analysis to estimate the energy dissipation amounts.

2020 ◽  
Vol 6 (5) ◽  
pp. 961-973
Author(s):  
Nassrin Jassim Hussien Al-Mansori ◽  
Thair Jabbar Mizhir Alfatlawi ◽  
Khalid S. Hashim ◽  
Laith S. Al-Zubaidi

Stilling basins can be defined as energy dissipaters constructed of the irrigation systems. This study aims at investigating the performance of the new seven baffle blocks design in terms of reducing the dimensions of stilling basins in irrigation systems. In order to assess the hydraulic efficiency of a new model for baffle block used in stilling basins, a Naval Research Laboratory (NRL) has conducted. The results of this study demonstrate that the performance of the new baffle block, in term of hydraulic jump length reduction and hydraulic energy dissipation, it's better than standard blocks. However, the ratios of the drag resistance attributed to the new baffles block (FB / F2) have been larger than that applied on the normal block. It was found that the new block dissipates the energy by 9.31% more than the concrete block, and decreases the length of the hydraulic jump by 38.6% in comparison with the standard blocks. However, the new block maximizes the drag force ratio by 98.6% in comparison with the standard baffle blocks. The findings indicated that in terms of energy reduction and dissipation in the length of the hydraulic jump, the new block is superior to the other kinds.


2018 ◽  
Vol 19 (4) ◽  
pp. 1110-1119
Author(s):  
Seyed Mahdi Saghebian

Abstract Channels with different shapes and bed conditions are used as useful appurtenances to dissipate the extra energy of a hydraulic jump. Accurate prediction of hydraulic jump energy dissipation is important in design of hydraulic structures. In the current study, hydraulic jump energy dissipation was assessed in channels with different shapes and bed conditions (i.e. smooth and rough beds) using the support vector machine (SVM) as an intelligence approach. Five series of experimental datasets were applied to develop the models. The results showed that the SVM model is successful in estimating the relative energy dissipation. For the smooth bed, it was observed that the sloping channel models with steps performed more successfully than rectangular and trapezoidal channels and the step height is an effective variable in the estimation process. For the rough bed, the trapezoidal channel models were more accurate than the rectangular channel. It was found that rough element geometry is effective in estimation of the energy dissipation. The result showed that the models of rough channels led to better predictions. The sensitivity analysis results revealed that Froude number had the more dominant role in the modeling. Comparison among SVM and two other intelligence approaches showed that SVM is more successful in the prediction process.


2019 ◽  
Vol 9 (7) ◽  
Author(s):  
A. Abbaspour ◽  
T. Taghavianpour ◽  
H. Arvanaghi

Abstract Nowadays, the porous screens have been used extensively in open channels to prevent erosion in ditches as the water in supercritical state flows past the screen which forces the formation of a hydraulic jump upstream of the screen and produces significant energy loss. In this investigation, the operation of screens has been studied for supercritical flow and the Froude number in the range of 4.5 to 10.6 on two reverse slopes experimentally. In this study, the parameters included arrangements of screens in both the single and double types, and the angle and distance of screens from the hydraulic jump toe. The screens were studied with a porosity of about 50% with square holes. The study results showed that using of screens on the reverse slope of − 0.025 dissipates more energy compared to reverse slope of − 0.015. The screens with double arrangement have better performance and dissipate more energy than the screens with single arrangement, while the distance of screens from the toe of the hydraulic jump does not have a significant effect on the energy dissipation.


2018 ◽  
Vol 21 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Kiyoumars Roushangar ◽  
Roghayeh Ghasempour

Abstract Rough bed channels are one of the appurtenances used to dissipate the extra energy of the flow through hydraulic jump. The aim of this paper is to assess the effects of channel geometry and rough boundary conditions (i.e., rectangular, trapezoidal, and expanding channels with different rough elements) in predicting the hydraulic jump energy dissipation using support vector machine (SVM) as a meta-model approach. Using different experimental data series, different models were developed with and without considering dimensional analysis. The results approved capability of the SVM model in predicting the relative energy dissipation. It was found that the developed models for expanding channel with central sill performed more successfully and, for this case, superior performance was obtained for the model with parameters Fr1 and h1/B. Considering the rectangular and trapezoidal channels, the model with parameters Fr1, (h2−h1)/h1, W/Z led to better predictions. It was observed that between two types of strip and staggered rough elements, strip type led to more accurate results. The obtained results showed that the developed models for the case of simulation based on dimensional analysis yielded better predictions. The sensitivity analysis results showed that Froude number had the most significant impact on the modeling.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This paper introduces the broadband over power lines-enhanced network model (BPLeNM) that is suitable for efficiently delivering the generated data of wireless sensor networks (WSNs) of overhead high-voltage (HV) power grids to the substations. BPLeNM exploits the high data rates of the already installed BPL networks across overhead HV grids. BPLeNM is compared against other two well-verified network models from the relevant literature: the linear network model (LNM) and the optimal arrangement network model (OANM). The contribution of this paper is threefold. First, the general mathematical framework that is necessary for describing WSNs of overhead HV grids is first presented. In detail, the general mathematical formulation of BPLeNM is proposed while the existing formulations of LNM and OANM are extended so as to deal with the general case of overhead HV grids. Based on these general mathematical formulations, the general expression of maximum delay time of the WSN data is determined for the three network models. Second, the three network models are studied and assessed for a plethora of case scenarios. Through these case scenarios, the impact of different lengths of overhead HV grids, different network arrangements, new communications technologies, variation of WSN density across overhead HV grids, and changes of generated WSN data rate on the maximum delay time is thoroughly examined. Third, to assess the performance and the feasibility of the previous network models, the feasibility probability (FP) is proposed. FP is a macroscopic metric that estimates how much practical and economically feasible is the selection of one of the previous three network models. The main conclusion of this paper is that BPLeNM defines a powerful, convenient, and schedulable network model for today’s and future’s overhead HV grids in the smart grid (SG) landscape.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


2019 ◽  
Vol 8 ◽  
pp. 54-56
Author(s):  
Ashmita Dahal Chhetri

Advertisements have been used for many years to influence the buying behaviors of the consumers. Advertisements are helpful in creating the awareness and perception among the customers of a product. This particular research was conducted on the 100 young male and female who use different brands of product to check the influence of advertisement on their buying behavior while creating the awareness and building the perceptions. Correlation, regression and other statistical tools were used to identify the relationship between these variables. The results revealed that the relationship between media and consumer behavior is positive. The adve1tising impact on sales and there is positive and high degree relationship between advertising and consumer behavior. The impact on advertising of a product of electronic media is better than non-electronic media.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 758
Author(s):  
Fiona Esam ◽  
Rachel Forrest ◽  
Natalie Waran

The influence of the COVID-19 pandemic on human-pet interactions within New Zealand, particularly during lockdown, was investigated via two national surveys. In Survey 1, pet owners (n = 686) responded during the final week of the five-week Alert Level 4 lockdown (highest level of restrictions—April 2020), and survey 2 involved 498 respondents during July 2020 whilst at Alert Level 1 (lowest level of restrictions). During the lockdown, 54.7% of owners felt that their pets’ wellbeing was better than usual, while only 7.4% felt that it was worse. Most respondents (84.0%) could list at least one benefit of lockdown for their pets, and they noted pets were engaged with more play (61.7%) and exercise (49.7%) than pre-lockdown. Many respondents (40.3%) expressed that they were concerned about their pet’s wellbeing after lockdown, with pets missing company/attention and separation anxiety being major themes. In Survey 2, 27.9% of respondents reported that they continued to engage in increased rates of play with their pets after lockdown, however, the higher levels of pet exercise were not maintained. Just over one-third (35.9%) of owners took steps to prepare their pets to transition out of lockdown. The results indicate that pets may have enjoyed improved welfare during lockdown due to the possibility of increased human-pet interaction. The steps taken by owners to prepare animals for a return to normal life may enhance pet wellbeing long-term if maintained.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 631-641
Author(s):  
Shujuan Yang

AbstractIn view of the problem of large earthquake displacement in the use of the original concrete engineering shear wall reinforcement method, the energy dissipation and damping structure is used to design the energy dissipation and damping structure reinforcement method in the concrete engineering shear wall. According to the design process of the set method, the anti-vibration coefficient of the concrete shear wall is tested. The energy dissipation structure is used to construct a shear damping wall, and the damper is added to the original shear wall. The concrete shear wall is strengthened by sticking steel technology. So far, the design of shear wall reinforcement method based on the energy dissipation structure has been completed. Compared with the original method, the displacement distance of this method is lower than that of the original method. In conclusion, the effect of shear wall reinforcement method based on the energy dissipation structure is better than that of the original method.


Sign in / Sign up

Export Citation Format

Share Document