scholarly journals Wastewater Treatment Plants in Mediterranean Spain: An Exploration of Relations between Water Treatments, Water Reuse, and Governance

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1710
Author(s):  
Paula Rodríguez-Villanueva ◽  
David Sauri

Wastewater treatment plants (WWTPs) are fundamental to enable the transition towards the principles of a circular economy in water supply. In Mediterranean Spain, an area with recurrent episodes of water stress, treated wastewater may become a critical resource for the future. However, its incorporation into the array of potential water options opens up questions regarding the different qualities obtained with each treatment, the extent of existing water reuse practices, or the governance regime of plants. In this paper, the state of WWTPs in Mediterranean Spain is analyzed, with focus on plant sizes, treatment technologies, water use, and governance regimes. The latter shows a strong presence of private WWTPs and a lesser extent of public–private WWTPs, while the number of public plants is small. Regarding treatment technologies, the most sophisticated systems are found in public–private plants that are also the largest in size. Reclaimed water is very significant for agricultural and golf course irrigation in some areas (Valencia, Murcia, Andalusia), but still relatively incipient for other uses.

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2020 ◽  
Vol 81 (9) ◽  
pp. 1994-2003
Author(s):  
M. Preisner ◽  
E. Neverova-Dziopak ◽  
Z. Kowalewski

Abstract One of the main factors of the increased eutrophication level of surface waters is the high anthropogenic loads of biogenic substances discharged into water bodies. Municipal wastewaters, containing large amounts of nitrogen and phosphorus play one of the key roles in the acceleration of eutrophication intensity. The main direction in the prevention of eutrophication caused by wastewater discharge has become the reduction of nutrient loads introduced to wastewater receivers in accordance with strict legal requirements achievable only in advanced technologies. The treated wastewater quality standards are actually developed for total nitrogen and total phosphorus content, disregarding the fact that eutrophication potential of treated wastewater is determined by the content of non-organic nutrient forms directly bioavailable for water vegetation. That is why the currently used energy-consuming and expensive technologies do not always guarantee effective protection against eutrophication and its consequences. The goal of the study was to analyze the most widely used wastewater treatment technologies for enhanced biological nutrients removal in treated wastewater eutrophication potential. For this purpose, an analysis of the operation of 18 wastewater treatment plants based on different technologies in Finland, Canada, Poland, Russia and the United States was realized. The analysis concluded that the eutrophication potential of treated wastewater to a large extent is conditioned by the applied technology. The results of the research concluded that the eutrophication potential can serve an important criterion for decision-making regarding the proper selection of wastewater treatment technologies aimed at eutrophication mitigation.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 397-405 ◽  
Author(s):  
R.J. Chiou ◽  
T.C. Chang ◽  
C.F. Ouyang

The Water Resources Agency (WRA), Ministry of Economic Affairs (MOEA) has predicted that the annual water demand in Taiwan will reach approximately 20 billion m3 by 2021. However, the present water supply is only 18 billion m3 per year. This means that an additional 2 billion m3 have to be developed in the next 17 years. The reuse of treated wastewater effluent from municipal wastewater treatment plants could be one target for the development of new water resources. The responsible government departments already have plans to construct public sewerage systems in order to improve the quality of life of the populace and protect the environment. The treated wastewater effluent from such municipal wastewater treatment plants could be a very stable and readily available secondary type of water resource, different from the traditional types of water resources. The major areas where reclaimed municipal wastewater can be used to replace traditional fresh water resources include agricultural and landscape irrigation, street cleaning, toilet flushing, secondary industrial reuse and environmental uses. However, necessary wastewater reclamation and reuse systems have not yet been established. The requirements for their establishment include water reuse guidelines and criteria, the elimination of health risks ensuring safe use, the determination of the wastewater treatment level appropriate for the reuse category, as well as the development and application of management systems reuse. An integrated system for water reuse would be of great benefit to us all by providing more efficient ways to utilise the water resources.


2004 ◽  
Vol 50 (2) ◽  
pp. 285-291 ◽  
Author(s):  
L. Mendoza-Espinosa ◽  
M. Victoria Orozco-Borbón ◽  
Patricia Silva-Nava

The city of Ensenada, Baja California, has three wastewater treatment plants and is one of the few cities in Mexico that treats all the wastewater that it generates. The largest wastewater treatment plant, called El Naranjo, treats on average 316 liters per second and complies with even the most stringent Mexican standards although a stricter control has to be achieved in order to avoid environmental and health problems At the moment, only 2% of the treated wastewater is used for the irrigation of sports fields and public landscape. The reclaimed water could be reused for the irrigation of crops for non-human consumption or ornamental products and/or for aquifer recharge. For reuse practices, two facts must be considered: a) an important part of the valley's production is exported to the USA and b) 30% of the city of Ensenada's water supply is obtained from the Maneadero aquifer. There is currently no Mexican legislation to stipulate adequate standards for aquifer recharge and decisions should be based on legislation from other places. Therefore, at the moment there is still a lack of technical and scientific elements to be able to make the best decision about the reuse of the wastewater.


2017 ◽  
Vol 60 (5) ◽  
pp. 1563-1574 ◽  
Author(s):  
Anne E. Dare ◽  
Rabi H. Mohtar ◽  
Chad T. Jafvert ◽  
Basem Shomar ◽  
Bernard Engel ◽  
...  

Abstract. Harsh environment, severe aridity, and climate change create chronic water shortages in the Middle East. Technical challenges, socio-economic factors, and competing uses of water have escalated the difficulties in water planning at national and institutional levels. This research identifies opportunities and challenges associated with wastewater treatment systems and the potential for wastewater reuse in the West Bank, Tunisia, and Qatar through the following objectives: (1) identify the factors associated with successful and unsuccessful reuse schemes, (2) compare treated wastewater quality with end use application of treated wastewater, and (3) identify the governance and social challenges preventing the use of treated wastewater, specifically in agricultural applications. Water quality analyses and consultations with farmers, local stakeholders, and water and agriculture experts were conducted. Opportunities and challenges for treated wastewater reuse in agriculture are identified as the proximity of the treatment facility to agricultural areas, water quality, and motivation of farmers. With proper maintenance and appropriate monitoring, the modest (natural) treatment facilities in the West Bank and secondary treatment technologies in Tunisia are capable of producing effluent safe for use in production of certain agricultural products; however, in Qatar, despite massive investments in producing high-quality treated wastewater using advanced treatment technologies, there is little demand. Water policies, laws and acts, and action plans are urgently needed to be coupled and integrated for implementation. Keywords: Arid lands, Food security, MENA, Wastewater treatment, Water reuse.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 221
Author(s):  
Rafał Tytus Bray ◽  
Katarzyna Jankowska ◽  
Eliza Kulbat ◽  
Aneta Łuczkiewicz ◽  
Aleksandra Sokołowska

The paper presents the results of research on the use of ultrafiltration, using membranes of 200 and 400 kDa separation, for disinfection of municipal treated wastewater. The research was conducted on a fractional technical scale using real municipal treated wastewater from two large wastewater treatment plants treating most of the wastewater over the one-million polycentric Gdańsk agglomeration (1.2 million inhabitants). UF 200 kDa and UF 400 kDa processes enabled further improvement of the physical and chemical parameters of treated wastewater. Total phosphorus (to below 0.2 mg/L–UF 200 kDa, 0.13 mg/L–UF 400 kDa) and turbid substances (to below 0.2 mg/L, both membranes) were removed in the highest degree. COD was reduced efficiently (to below 25.6 mgO2/L–UF 200 kDa, 26.8 mgO2/L–UF 400 kDa), while total nitrogen was removed to a small extent (to 7.12 mg/L–UF 200 kDa and 5.7 mg/L–UF 400 kDa. Based on the reduction of indicator bacteria; fecal coliforms including E. coli (FC) and fecal enterococci (FE) it was found that the ultrafiltration is an effective method of disinfection. Not much indicator bacterial were observed in the permeate after processes (UF 200 kDa; FC—5 CFU/L; FE—1 CFU/L and UF 400 kDa; FC—70 CFU/L; FE—10 CFU/L. However, microscopic analysis of prokaryotic cells and virus particles showed their presence after the application of both membrane types; TCN 3.0 × 102 cells/mL–UF 200 kDa, 5.0 × 103 cells/mL–UF 400 kDa, VP 1.0 × 105/mL. The presence of potentially pathogenic, highly infectious virus particles means that ultrafiltration cannot be considered a sufficient disinfection method for treated wastewater diverted for reuse or discharged from high load wastewater treatment plants to recreational areas. For full microbiological safety it would be advisable to apply an additional disinfection method (e.g., ozonation).


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
T. S. C. Quintão ◽  
F. G. Silva ◽  
A. L. Pereira ◽  
W. N. Araújo ◽  
P. M. Oliveira ◽  
...  

AbstractHuman enteric viruses, such as enteric adenoviruses (HAdV), are known to be involved with gastrointestinal disorders, especially acute gastroenteritis. Several studies have used HAdV as an indicator of water quality, since they are considered highly stable and widely distributed viruses in water matrices. The aim of this study was to detect and genotype HAdVs in water matrices impacted by discharges of treated effluents from wastewater treatment plants (WWTPs). Wastewater treatment plants from the sanitary system of the Brazilian Federal District were assessed in 2018 and 2019. Samples were collected upstream and downstream from discharge points for each WWTP. Viral concentration based on adsorption-elution and conventional PCR was used for molecular detection, and positive samples were sequenced for phylogenetic analysis. Pluviosity data for the period in which the samples were collected were obtained. Our results demonstrated the presence of HAdVs in 27.2% (61/224) of the samples. The positivity was significantly higher in downstream samples compared to upstream. Moreover, the HAdV positivity was higher in downstream samples collected from receiving water bodies impacted by secondary-level WWTPs in comparison with those impacted by tertiary-level WWTPs. Phylogenetic analysis demonstrated the presence of genotypes 40 and 41, with prevalence of HAdV genotype 41. Despite the predominance of HAdV-41, an increasing frequency of the HAdV-40 was associated with higher pluviosity. In conclusion, this study is the first documentation in the Brazilian Federal District dealing with the prevalence and diversity of HAdVs in several WWTP, along with their correlation with rainfall index.


2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


2021 ◽  
Author(s):  
Adamo R. Petosa ◽  
Monica Nowierski ◽  
Viviane Yargeau

Abstract Bioanalytical tools, namely in vitro bioassays, can be employed in tandem with chemical analyses to assess the efficacy of wastewater treatment and the potential for adverse effects from the discharges of wastewater into receiving waters. In the present study, samples of untreated wastewater (i.e. influent) and treated wastewater (i.e. effluent) were collected from two wastewater treatment plants and a wastewater treatment lagoon serving municipalities in southern Ontario, Canada. In addition, grab samples of surface water were collected downstream of the lagoon discharge. After solid phase extraction (SPE) using ion-exchange columns for basic/neutral and acidic compounds, respectively, the extracts were analyzed for a suite of 16 indicator compounds. The two SPE extracts were combined for analysis of biological responses in four in vitro cell-based bioassays. The concentrations of several indicator compounds, including the estrogens, 17β-estradiol and 17α-ethinylestradiol, were below the limits of detection. However, androstenedione and estrone were detected in several influent samples. The concentrations of these steroid hormones and some of the other indicator compounds declined during treatment but acesulfame K, carbamazepine, trimethoprim and DEET persisted in the effluent. The MTS- CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) indicated that cell viability was not affected by exposure to the extracts. The Qiagen Nuclear Receptors 10-Pathway Reporter Array indicated that several cellular pathways were upregulated, with the greatest upregulation observed with the estrogen receptor (i.e. induction ratios 12 to 47) and the liver X receptor (i.e. induction ratios 10 to 45). The ERα CALUX assay indicated that estrogenic activity was lower in effluents compared to influents, with the greatest estrogenic activity observed for grab samples of influent from the lagoon (i.e. 56-215 ng L-1 17β-estradiol equivalents). Finally, the results of the Nrf2 Luciferase Luminescence Assay indicated a lower oxidative stress in the effluent samples. Overall, the present study demonstrates that chemical analyses are limited in their ability to predict or explain reductions in the toxicity of treated wastewater. There are thus advantages to using a combination of chemical analyses and in vitro bioassays to monitor the treatment efficiency of wastewater treatment plants and to predict the potential impacts of wastewater discharges into receiving waters.


Sign in / Sign up

Export Citation Format

Share Document