scholarly journals A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2216
Author(s):  
Muhammad Zahoor ◽  
Nausheen Nazir ◽  
Muhammad Iftikhar ◽  
Sumaira Naz ◽  
Ivar Zekker ◽  
...  

Recent developments in nanoscience have appreciably modified how diseases are prevented, diagnosed, and treated. Metal nanoparticles, specifically silver nanoparticles (AgNPs), are widely used in bioscience. From time to time, various synthetic methods for the synthesis of AgNPs are reported, i.e., physical, chemical, and photochemical ones. However, among these, most are expensive and not eco-friendly. The physicochemical parameters such as temperature, use of a dispersing agent, surfactant, and others greatly influence the quality and quantity of the synthesized NPs and ultimately affect the material’s properties. Scientists worldwide are trying to synthesize NPs and are devising methods that are easy to apply, eco-friendly, and economical. Among such strategies is the biogenic method, where plants are used as the source of reducing and capping agents. In this review, we intend to debate different strategies of AgNP synthesis. Although, different preparation strategies are in use to synthesize AgNPs such as electron irradiation, optical device ablation, chemical reduction, organic procedures, and photochemical methods. However, biogenic processes are preferably used, as they are environment-friendly and economical. The review covers a comprehensive discussion on the biological activities of AgNPs, such as antimicrobial, anticancer anti-inflammatory, and anti-angiogenic potentials of AgNPs. The use of AgNPs in water treatment and disinfection has also been discussed in detail.

2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


Author(s):  
Prasad Dandawate ◽  
Khursheed Ahmed ◽  
Subhash Padhye ◽  
Aamir Ahmad ◽  
Bernhard Biersack

Background: Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest among scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. Methods: Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature is covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. Results: Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them is a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. Conclusion: This review provides a summary of recent heterocyclic chalcone derivatives with distinct anti-tumor activities.


2020 ◽  
Vol 24 (22) ◽  
pp. 2601-2611
Author(s):  
Komal Chandrakar ◽  
Jeevan Lal Patel ◽  
S. P. Mahapatra ◽  
Santhosh Penta

Coumarin-linked heterocycles represent privileged structural subunits and are welldistributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming a valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last year has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of aqueous medium in organic synthesis is fulfilling some of the goals of ‘green and sustainable chemistry’ as it has some advantages over the traditional synthetic methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Hence, significant progress has been made in recent years. In the present review, we provide an overview of the recent developments of multicomponent synthesis of biologically relevant coumarin linked and fused heterocyclic compounds carried out from 2015 till today in an aqueous medium.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jenel Marian Patrascu ◽  
Ioan Avram Nedelcu ◽  
Maria Sonmez ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

This paper presents the synthesis, characterisation, andin vitrotesting of homogenous and heterogeneous materials containing silver nanoparticles (nanoAg). Three types of antiseptic materials based on collagen (COLL), hydroxyapatite (HA), and collagen/hydroxyapatite (COLL/HA) composite materials were obtained. The synthesis of silver nanoparticles was realized by chemical reaction as well as plasma sputtering deposition. The use of chemical reduction allows the synthesis of homogenous materials while the plasma sputtering deposition can be easily used for the synthesis of homogeneous and heterogeneous support. Based on thein vitroassays clear antiseptic activity againstEscherichia coliwas relieved even at low content of nanoAg (10 ppm).


2019 ◽  
Author(s):  
Chem Int

Nanotechnology is a significant field of contemporary research dealing with design, synthesis, and manipulation of particle structures ranging from in the region of 1-100 nm. Nanoparticles (NPs) have broad choice of applications in areas such as fitness care, cosmetics, foodstuff and feed, environmental health, mechanics, optics, biomedical sciences, chemical industries, electronics, space industries, drug-gene delivery, energy science, optoelectronics, catalysis, single electron transistors, light emitters, nonlinear optical devices, and photo-electrochemical applications. Nano Biotechnology is a speedily mounting scientific field of producing and constructing devices, an important area of research in nano biotechnology is the synthesis of NPs with different chemical compositions, sizes and morphologies, and controlled dispersities. Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This assessment presents a general idea of silver nanoparticle preparation. The aim of this analysis article is, therefore, to replicate on the existing state and potential prediction, especially the potentials and limitations of the above mentioned techniques for industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sunday Adewale Akintelu ◽  
Yao Bo ◽  
Aderonke Similoluwa Folorunso

Developments in nanotechnology and natural product research toward the search for novel antibacterial agents have drawn the interest of many scientists to the synthesis of silver nanoparticles (AgNPs) from natural product (especially plants) due to its numerous benefits over other methods of synthesis such as been easy, economical, convenient, and environmental friendly. Aside from the aforementioned advantages, the synthesis of AgNPs from medicinal plant has been reported as the best approach of synthesizing AgNPs with great biological activities due to the numerous biomolecules found in plants. Recently, the number of researches toward the improvement of the yield, morphological properties, analytical techniques, and the development of optimal conditions and exact mechanism for synthesizing AgNPs from plants have been increasing tremendously. In this review, we present a comprehensive report on the recent development in the synthesis, optimization conditions, mechanism, and characterization techniques of AgNPs synthesized from plant extracts. Furthermore, a thorough discussion on the recent advances in the application of AgNPs synthesized from plant as therapeutic agent against bacterial infections was made.


2015 ◽  
Vol 15 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Endang Susilowati ◽  
Triyono Triyono ◽  
Sri Juari Santosa ◽  
Indriana Kartini

Silver-chitosan nanocomposites colloidal was successfully performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO3) as metal precursor and chitosan as stabilizing agent. Compared to other synthetic methods, this work is green and simple. The effect of the amount of NaOH, molar ratio of AgNO3 to glucose and AgNO3 concentration towards Localized Surface Plasmon Resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The stability of the colloid was also studied for the first 16 weeks of storage at ambient temperature. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 402.4–414.5 nm. It is also shown that the absorption peak of LSPR were affected by NaOH amount, ratio molar AgNO3/glucose and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 6 to 18 nm as shown by TEM images. All colloidals were stable without any aggregation for 16 weeks after preparation. The newly prepared silver-chitosan nanocomposites colloidal may have potential for antibacterial applications.


2014 ◽  
Vol 2 ◽  
pp. 194308921350703 ◽  
Author(s):  
N. Muniyappan ◽  
N. S. Nagarajan

Silver nanoparticles (AgNPs) synthesized are utilized in drugs because of their pharmacological and biomedical applications and also due to their ecofriendly properties. In the present study, stable AgNPs have been synthesized from the aqueous extract of Dalbergia rostrata stem bark (DRSB), which is used both as a reducing and as a stabilizing agent. The AgNPs synthesized by ultrasonication at 25°C for 10 min were found to be stable in aqueous solution at room temperature over a period of 3 months. The quantitatively stable AgNPs formed by treating the aqueous solution of AgNO3 with the aqueous extract of the plant by reduction of Ag+ ions when monitored by UV–visible spectroscopic study revealed the surface plasmon resonance (SPR) at 425 nm. According to transmission electron micrography, the NPs were spherical and in the size range of 14 ± 4 nm. When evaluated for their anti-inflammatory and antioxidant activity by in vitro methods, AgNPs showed considerably enhanced activity compared to DRSB aqueous extract.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Sign in / Sign up

Export Citation Format

Share Document